Abstract Cauchy Problems

Abstract Cauchy Problems
Author :
Publisher : CRC Press
Total Pages : 259
Release :
ISBN-10 : 9781420035490
ISBN-13 : 1420035495
Rating : 4/5 (90 Downloads)

Synopsis Abstract Cauchy Problems by : Irina V. Melnikova

Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularizat

Vector-valued Laplace Transforms and Cauchy Problems

Vector-valued Laplace Transforms and Cauchy Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 526
Release :
ISBN-10 : 9783034850759
ISBN-13 : 3034850751
Rating : 4/5 (59 Downloads)

Synopsis Vector-valued Laplace Transforms and Cauchy Problems by : Wolfgang Arendt

Linear evolution equations in Banach spaces have seen important developments in the last two decades. This is due to the many different applications in the theory of partial differential equations, probability theory, mathematical physics, and other areas, and also to the development of new techniques. One important technique is given by the Laplace transform. It played an important role in the early development of semigroup theory, as can be seen in the pioneering monograph by Rille and Phillips [HP57]. But many new results and concepts have come from Laplace transform techniques in the last 15 years. In contrast to the classical theory, one particular feature of this method is that functions with values in a Banach space have to be considered. The aim of this book is to present the theory of linear evolution equations in a systematic way by using the methods of vector-valued Laplace transforms. It is simple to describe the basic idea relating these two subjects. Let A be a closed linear operator on a Banach space X. The Cauchy problern defined by A is the initial value problern (t 2 0), (CP) {u'(t) = Au(t) u(O) = x, where x E X is a given initial value. If u is an exponentially bounded, continuous function, then we may consider the Laplace transform 00 u(>. ) = 1 e-). . tu(t) dt of u for large real>. .

Stochastic Cauchy Problems in Infinite Dimensions

Stochastic Cauchy Problems in Infinite Dimensions
Author :
Publisher : CRC Press
Total Pages : 160
Release :
ISBN-10 : 9781498785853
ISBN-13 : 1498785859
Rating : 4/5 (53 Downloads)

Synopsis Stochastic Cauchy Problems in Infinite Dimensions by : Irina V. Melnikova

Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory. The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the "classical" approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.

The Navier-Stokes Equations

The Navier-Stokes Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 376
Release :
ISBN-10 : 9783034805513
ISBN-13 : 3034805519
Rating : 4/5 (13 Downloads)

Synopsis The Navier-Stokes Equations by : Hermann Sohr

The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

The Cauchy Problem

The Cauchy Problem
Author :
Publisher : Cambridge University Press
Total Pages : 664
Release :
ISBN-10 : 9780521302388
ISBN-13 : 0521302382
Rating : 4/5 (88 Downloads)

Synopsis The Cauchy Problem by : Hector O. Fattorini

This volume deals with the Cauchy or initial value problem for linear differential equations. It treats in detail some of the applications of linear space methods to partial differential equations, especially the equations of mathematical physics such as the Maxwell, Schrödinger and Dirac equations. Background material presented in the first chapter makes the book accessible to mathematicians and physicists who are not specialists in this area as well as to graduate students.

Basic Theory Of Fractional Differential Equations (Second Edition)

Basic Theory Of Fractional Differential Equations (Second Edition)
Author :
Publisher : World Scientific
Total Pages : 380
Release :
ISBN-10 : 9789813148185
ISBN-13 : 9813148187
Rating : 4/5 (85 Downloads)

Synopsis Basic Theory Of Fractional Differential Equations (Second Edition) by : Yong Zhou

This invaluable monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary and partial differential equations. It provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the technique of Picard operators, critical point theory and semigroup theory. Based on the research work carried out by the authors and other experts during the past seven years, the contents are very recent and comprehensive.In this edition, two new topics have been added, that is, fractional impulsive differential equations, and fractional partial differential equations including fractional Navier-Stokes equations and fractional diffusion equations.

Abstract Volterra Integro-Differential Equations

Abstract Volterra Integro-Differential Equations
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 0367377675
ISBN-13 : 9780367377670
Rating : 4/5 (75 Downloads)

Synopsis Abstract Volterra Integro-Differential Equations by : Marko Kostic

The theory of linear Volterra Integro-differental equations has been developing rapidly in the last three decades. This book provides an easy-to-read, concise introduction to the theory of ill-posed abstract Volterra Integro-differential equations. It is accessible to readers whose backgrounds include functions of one complex variable, integration theory and the basic theory of locally convex spaces. Each chapter is further divided into sections and subsections, and contains plenty of examples and open problems.

Blow-up in Nonlinear Sobolev Type Equations

Blow-up in Nonlinear Sobolev Type Equations
Author :
Publisher : Walter de Gruyter
Total Pages : 661
Release :
ISBN-10 : 9783110255294
ISBN-13 : 3110255294
Rating : 4/5 (94 Downloads)

Synopsis Blow-up in Nonlinear Sobolev Type Equations by : Alexander B. Al'shin

The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The abstract results apply to a large variety of problems. Thus, the well-known Benjamin-Bona-Mahony-Burgers equation and Rosenau-Burgers equations with sources and many other physical problems are considered as examples. Moreover, the method proposed for studying blow-up phenomena for nonlinear Sobolev-type equations is applied to equations which play an important role in physics. For instance, several examples describe different electrical breakdown mechanisms in crystal semiconductors, as well as the breakdown in the presence of sources of free charges in a self-consistent electric field. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature.

The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations

The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations
Author :
Publisher : Cambridge University Press
Total Pages : 177
Release :
ISBN-10 : 9781107477391
ISBN-13 : 1107477395
Rating : 4/5 (91 Downloads)

Synopsis The Cauchy Problem for Non-Lipschitz Semi-Linear Parabolic Partial Differential Equations by : J. C. Meyer

A monograph containing significant new developments in the theory of reaction-diffusion systems, particularly those arising in chemistry and life sciences.