Abstract Volterra Integro-Differential Equations

Abstract Volterra Integro-Differential Equations
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 0367377675
ISBN-13 : 9780367377670
Rating : 4/5 (75 Downloads)

Synopsis Abstract Volterra Integro-Differential Equations by : Marko Kostic

The theory of linear Volterra Integro-differental equations has been developing rapidly in the last three decades. This book provides an easy-to-read, concise introduction to the theory of ill-posed abstract Volterra Integro-differential equations. It is accessible to readers whose backgrounds include functions of one complex variable, integration theory and the basic theory of locally convex spaces. Each chapter is further divided into sections and subsections, and contains plenty of examples and open problems.

Abstract Volterra Integro-Differential Equations

Abstract Volterra Integro-Differential Equations
Author :
Publisher : CRC Press
Total Pages : 480
Release :
ISBN-10 : 9781482254310
ISBN-13 : 148225431X
Rating : 4/5 (10 Downloads)

Synopsis Abstract Volterra Integro-Differential Equations by : Marko Kostic

The theory of linear Volterra integro-differential equations has been developing rapidly in the last three decades. This book provides an easy to read concise introduction to the theory of ill-posed abstract Volterra integro-differential equations. A major part of the research is devoted to the study of various types of abstract (multi-term) fracti

Theory of Integro-Differential Equations

Theory of Integro-Differential Equations
Author :
Publisher : CRC Press
Total Pages : 376
Release :
ISBN-10 : 2884490000
ISBN-13 : 9782884490009
Rating : 4/5 (00 Downloads)

Synopsis Theory of Integro-Differential Equations by : V. Lakshmikantham

This unique monograph investigates the theory and applications of Volterra integro-differential equations. Whilst covering the basic theory behind these equations it also studies their qualitative properties and discusses a large number of applications. This comprehensive work presents a unified framework to investigate the fundamental existence of theory, treats stability theory in terms of Lyapunov functions and functionals, develops the theory of integro-differential equations with impulse effects, and deals with linear evolution equations in abstract spaces. Various applications of integro-differential equations, such as population dynamics, nuclear reactors, viscoelasticity, wave propagation and engineering systems, are discussed, making this book indispensable for mathematicians and engineers alike.

Existence Theory for Nonlinear Integral and Integrodifferential Equations

Existence Theory for Nonlinear Integral and Integrodifferential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 230
Release :
ISBN-10 : 9789401149921
ISBN-13 : 9401149925
Rating : 4/5 (21 Downloads)

Synopsis Existence Theory for Nonlinear Integral and Integrodifferential Equations by : Donal O'Regan

The theory of integral and integrodifferential equations has ad vanced rapidly over the last twenty years. Of course the question of existence is an age-old problem of major importance. This mono graph is a collection of some of the most advanced results to date in this field. The book is organized as follows. It is divided into twelve chap ters. Each chapter surveys a major area of research. Specifically, some of the areas considered are Fredholm and Volterra integral and integrodifferential equations, resonant and nonresonant problems, in tegral inclusions, stochastic equations and periodic problems. We note that the selected topics reflect the particular interests of the authors. Donal 0 'Regan Maria Meehan CHAPTER 1 INTRODUCTION AND PRELIMINARIES 1.1. Introduction The aim of this book is firstly to provide a comprehensive existence the ory for integral and integrodifferential equations, and secondly to present some specialised topics in integral equations which we hope will inspire fur ther research in the area. To this end, the first part of the book deals with existence principles and results for nonlinear, Fredholm and Volterra inte gral and integrodifferential equations on compact and half-open intervals, while selected topics (which reflect the particular interests of the authors) such as nonresonance and resonance problems, equations in Banach spaces, inclusions, and stochastic equations are presented in the latter part.

Linear and Nonlinear Integral Equations

Linear and Nonlinear Integral Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 639
Release :
ISBN-10 : 9783642214493
ISBN-13 : 3642214495
Rating : 4/5 (93 Downloads)

Synopsis Linear and Nonlinear Integral Equations by : Abdul-Majid Wazwaz

Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.

Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations

Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 372
Release :
ISBN-10 : 9783110641851
ISBN-13 : 3110641852
Rating : 4/5 (51 Downloads)

Synopsis Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations by : Marko Kostić

This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.

Volterra Integral and Functional Equations

Volterra Integral and Functional Equations
Author :
Publisher : Cambridge University Press
Total Pages : 727
Release :
ISBN-10 : 9780521372893
ISBN-13 : 0521372895
Rating : 4/5 (93 Downloads)

Synopsis Volterra Integral and Functional Equations by : G. Gripenberg

This book looks at the theories of Volterra integral and functional equations.

Integral and Integrodifferential Equations

Integral and Integrodifferential Equations
Author :
Publisher : CRC Press
Total Pages : 344
Release :
ISBN-10 : 905699221X
ISBN-13 : 9789056992217
Rating : 4/5 (1X Downloads)

Synopsis Integral and Integrodifferential Equations by : Ravi P. Agarwal

This collection of 24 papers, which encompasses the construction and the qualitative as well as quantitative properties of solutions of Volterra, Fredholm, delay, impulse integral and integro-differential equations in various spaces on bounded as well as unbounded intervals, will conduce and spur further research in this direction.

The Optimal Homotopy Asymptotic Method

The Optimal Homotopy Asymptotic Method
Author :
Publisher : Springer
Total Pages : 476
Release :
ISBN-10 : 9783319153742
ISBN-13 : 3319153749
Rating : 4/5 (42 Downloads)

Synopsis The Optimal Homotopy Asymptotic Method by : Vasile Marinca

This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.