A Window Into Zeta and Modular Physics

A Window Into Zeta and Modular Physics
Author :
Publisher : Cambridge University Press
Total Pages : 361
Release :
ISBN-10 : 9780521199308
ISBN-13 : 0521199301
Rating : 4/5 (08 Downloads)

Synopsis A Window Into Zeta and Modular Physics by : Klaus Kirsten

Consists of lectures that are part of the MSRI workshops and that introduce students and researchers to the intriguing world of theoretical physics.

Some Musings on Theta, Eta, and Zeta

Some Musings on Theta, Eta, and Zeta
Author :
Publisher : Springer Nature
Total Pages : 233
Release :
ISBN-10 : 9789819953363
ISBN-13 : 9819953367
Rating : 4/5 (63 Downloads)

Synopsis Some Musings on Theta, Eta, and Zeta by : Floyd L. Williams

Local Zeta Regularization And The Scalar Casimir Effect: A General Approach Based On Integral Kernels

Local Zeta Regularization And The Scalar Casimir Effect: A General Approach Based On Integral Kernels
Author :
Publisher : World Scientific
Total Pages : 274
Release :
ISBN-10 : 9789813225015
ISBN-13 : 9813225017
Rating : 4/5 (15 Downloads)

Synopsis Local Zeta Regularization And The Scalar Casimir Effect: A General Approach Based On Integral Kernels by : Davide Fermi

Zeta regularization is a method to treat the divergent quantities appearing in several areas of mathematical physics and, in particular, in quantum field theory; it is based on the fascinating idea that a finite value can be ascribed to a formally divergent expression via analytic continuation with respect to a complex regulating parameter.This book provides a thorough overview of zeta regularization for the vacuum expectation values of the most relevant observables of a quantized, neutral scalar field in Minkowski spacetime; the field can be confined to a spatial domain, with suitable boundary conditions, and an external potential is possibly present. Zeta regularization is performed in this framework for both local and global observables, like the stress-energy tensor and the total energy; the analysis of their vacuum expectation values accounts for the Casimir physics of the system. The analytic continuation process required in this setting by zeta regularization is deeply linked to some integral kernels; these are determined by the fundamental elliptic operator appearing in the evolution equation for the quantum field. The book provides a systematic illustration of these connections, devised as a toolbox for explicit computations in specific configurations; many examples are presented. A comprehensive account is given of the existing literature on this subject, including the previous work of the authors.The book will be useful to anyone interested in a mathematically sound description of quantum vacuum effects, from graduate students to scientists working in this area.

Lumen Naturae

Lumen Naturae
Author :
Publisher : MIT Press
Total Pages : 390
Release :
ISBN-10 : 9780262043908
ISBN-13 : 0262043904
Rating : 4/5 (08 Downloads)

Synopsis Lumen Naturae by : Matilde Marcolli

Exploring common themes in modern art, mathematics, and science, including the concept of space, the notion of randomness, and the shape of the cosmos. This is a book about art—and a book about mathematics and physics. In Lumen Naturae (the title refers to a purely immanent, non-supernatural form of enlightenment), mathematical physicist Matilde Marcolli explores common themes in modern art and modern science—the concept of space, the notion of randomness, the shape of the cosmos, and other puzzles of the universe—while mapping convergences with the work of such artists as Paul Cezanne, Mark Rothko, Sol LeWitt, and Lee Krasner. Her account, focusing on questions she has investigated in her own scientific work, is illustrated by more than two hundred color images of artworks by modern and contemporary artists. Thus Marcolli finds in still life paintings broad and deep philosophical reflections on space and time, and connects notions of space in mathematics to works by Paul Klee, Salvador Dalí, and others. She considers the relation of entropy and art and how notions of entropy have been expressed by such artists as Hans Arp and Fernand Léger; and traces the evolution of randomness as a mode of artistic expression. She analyzes the relation between graphical illustration and scientific text, and offers her own watercolor-decorated mathematical notebooks. Throughout, she balances discussions of science with explorations of art, using one to inform the other. (She employs some formal notation, which can easily be skipped by general readers.) Marcolli is not simply explaining art to scientists and science to artists; she charts unexpected interdependencies that illuminate the universe.

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane
Author :
Publisher : Springer Science & Business Media
Total Pages : 430
Release :
ISBN-10 : 9781461479727
ISBN-13 : 146147972X
Rating : 4/5 (27 Downloads)

Synopsis Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane by : Audrey Terras

This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.

Algebraic Combinatorics and the Monster Group

Algebraic Combinatorics and the Monster Group
Author :
Publisher : Cambridge University Press
Total Pages : 583
Release :
ISBN-10 : 9781009338042
ISBN-13 : 1009338048
Rating : 4/5 (42 Downloads)

Synopsis Algebraic Combinatorics and the Monster Group by : Alexander A. Ivanov

The current state of knowledge on the Monster group, including Majorana theory, Vertex Operator Algebras, Moonshine and maximal subgroups.

The sine-Gordon Model and its Applications

The sine-Gordon Model and its Applications
Author :
Publisher : Springer
Total Pages : 271
Release :
ISBN-10 : 9783319067223
ISBN-13 : 3319067222
Rating : 4/5 (23 Downloads)

Synopsis The sine-Gordon Model and its Applications by : Jesús Cuevas-Maraver

The sine-Gordon model is a ubiquitous model of Mathematical Physics with a wide range of applications extending from coupled torsion pendula and Josephson junction arrays to gravitational and high-energy physics models. The purpose of this book is to present a summary of recent developments in this field, incorporating both introductory background material, but also with a strong view towards modern applications, recent experiments, developments regarding the existence, stability, dynamics and asymptotics of nonlinear waves that arise in the model. This book is of particular interest to a wide range of researchers in this field, but serves as an introductory text for young researchers and students interested in the topic. The book consists of well-selected thematic chapters on diverse mathematical and physical aspects of the equation carefully chosen and assigned.

Developments and Retrospectives in Lie Theory

Developments and Retrospectives in Lie Theory
Author :
Publisher : Springer
Total Pages : 403
Release :
ISBN-10 : 9783319098043
ISBN-13 : 3319098047
Rating : 4/5 (43 Downloads)

Synopsis Developments and Retrospectives in Lie Theory by : Geoffrey Mason

The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. These workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. At the beginning, the top universities in California and Utah hosted the meetings which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. The contributors to this volume have all participated in these Lie theory workshops and include in this volume expository articles which cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned-above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.

Vertex Operator Algebras, Number Theory and Related Topics

Vertex Operator Algebras, Number Theory and Related Topics
Author :
Publisher : American Mathematical Soc.
Total Pages : 268
Release :
ISBN-10 : 9781470449384
ISBN-13 : 1470449382
Rating : 4/5 (84 Downloads)

Synopsis Vertex Operator Algebras, Number Theory and Related Topics by : Matthew Krauel

This volume contains the proceedings of the International Conference on Vertex Operator Algebras, Number Theory, and Related Topics, held from June 11–15, 2018, at California State University, Sacramento, California. The mathematics of vertex operator algebras, vector-valued modular forms and finite group theory continues to provide a rich and vibrant landscape in mathematics and physics. The resurgence of moonshine related to the Mathieu group and other groups, the increasing role of algebraic geometry and the development of irrational vertex operator algebras are just a few of the exciting and active areas at present. The proceedings center around active research on vertex operator algebras and vector-valued modular forms and offer original contributions to the areas of vertex algebras and number theory, surveys on some of the most important topics relevant to these fields, introductions to new fields related to these and open problems from some of the leaders in these areas.

Lie Groups, Number Theory, and Vertex Algebras

Lie Groups, Number Theory, and Vertex Algebras
Author :
Publisher : American Mathematical Soc.
Total Pages : 122
Release :
ISBN-10 : 9781470453510
ISBN-13 : 1470453517
Rating : 4/5 (10 Downloads)

Synopsis Lie Groups, Number Theory, and Vertex Algebras by : Dražen Adamović

This volume contains the proceedings of the conference Representation Theory XVI, held from June 25–29, 2019, in Dubrovnik, Croatia. The articles in the volume address selected aspects of representation theory of reductive Lie groups and vertex algebras, and are written by prominent experts in the field as well as junior researchers. The three main topics of these articles are Lie theory, number theory, and vertex algebras.