Zeta Functions in Algebra and Geometry

Zeta Functions in Algebra and Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 362
Release :
ISBN-10 : 9780821869000
ISBN-13 : 0821869000
Rating : 4/5 (00 Downloads)

Synopsis Zeta Functions in Algebra and Geometry by : Antonio Campillo

Contains the proceedings of the Second International Workshop on Zeta Functions in Algebra and Geometry held May 3-7, 2010 at the Universitat de les Illes Balears, Palma de Mallorca, Spain. The conference focused on the following topics: arithmetic and geometric aspects of local, topological, and motivic zeta functions, Poincare series of valuations, zeta functions of groups, rings, and representations, prehomogeneous vector spaces and their zeta functions, and height zeta functions.

Zeta-functions

Zeta-functions
Author :
Publisher : Pitman Publishing
Total Pages : 256
Release :
ISBN-10 : UOM:49015000693995
ISBN-13 :
Rating : 4/5 (95 Downloads)

Synopsis Zeta-functions by : Alan David Thomas

Zeta and L-Functions of Varieties and Motives

Zeta and L-Functions of Varieties and Motives
Author :
Publisher : Cambridge University Press
Total Pages : 217
Release :
ISBN-10 : 9781108574914
ISBN-13 : 1108574912
Rating : 4/5 (14 Downloads)

Synopsis Zeta and L-Functions of Varieties and Motives by : Bruno Kahn

The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.

Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves

Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves
Author :
Publisher : American Mathematical Soc.
Total Pages : 114
Release :
ISBN-10 : 9780821829738
ISBN-13 : 0821829734
Rating : 4/5 (38 Downloads)

Synopsis Higher Regulators, Algebraic $K$-Theory, and Zeta Functions of Elliptic Curves by : Spencer J. Bloch

This is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more).

Zeta Functions in Geometry

Zeta Functions in Geometry
Author :
Publisher :
Total Pages : 466
Release :
ISBN-10 : UOM:39015033121073
ISBN-13 :
Rating : 4/5 (73 Downloads)

Synopsis Zeta Functions in Geometry by : Kurokawa N. (Nobushige)

This book contains accounts of work presented during the research conference, ``Zeta Functions in Geometry,'' held at the Tokyo Institute of Technology in August 1990. The aim of the conference was to provide an opportunity for the discussion of recent results by geometers and number theorists on zeta functions in several different categories. The exchange of ideas produced new insights on various geometric zeta functions, as well as the classical zeta functions. The zeta functions covered here are the Selberg zeta functions, the Ihara zeta functions, spectral zeta functions, and those associated with prehomogeneous vector spaces. Accessible to graduate students with background in geometry and number theory, Zeta Functions in Geometry will prove useful for its presentation of new results and up-to-date surveys.

Zeta Functions of Groups and Rings

Zeta Functions of Groups and Rings
Author :
Publisher : Springer Science & Business Media
Total Pages : 217
Release :
ISBN-10 : 9783540747017
ISBN-13 : 354074701X
Rating : 4/5 (17 Downloads)

Synopsis Zeta Functions of Groups and Rings by : Marcus du Sautoy

Zeta functions have been a powerful tool in mathematics over the last two centuries. This book considers a new class of non-commutative zeta functions which encode the structure of the subgroup lattice in infinite groups. The book explores the analytic behaviour of these functions together with an investigation of functional equations. Many important examples of zeta functions are calculated and recorded providing an important data base of explicit examples and methods for calculation.

An Introduction to Algebraic Geometry

An Introduction to Algebraic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 266
Release :
ISBN-10 : 9780821811443
ISBN-13 : 0821811444
Rating : 4/5 (43 Downloads)

Synopsis An Introduction to Algebraic Geometry by : Kenji Ueno

This introduction to algebraic geometry allows readers to grasp the fundamentals of the subject with only linear algebra and calculus as prerequisites. After a brief history of the subject, the book introduces projective spaces and projective varieties, and explains plane curves and resolution of their singularities. The volume further develops the geometry of algebraic curves and treats congruence zeta functions of algebraic curves over a finite field. It concludes with a complex analytical discussion of algebraic curves. The author emphasizes computation of concrete examples rather than proofs, and these examples are discussed from various viewpoints. This approach allows readers to develop a deeper understanding of the theorems.

Fractal Geometry, Complex Dimensions and Zeta Functions

Fractal Geometry, Complex Dimensions and Zeta Functions
Author :
Publisher : Springer Science & Business Media
Total Pages : 583
Release :
ISBN-10 : 9781461421764
ISBN-13 : 1461421764
Rating : 4/5 (64 Downloads)

Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel L. Lapidus

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

An Introduction to Algebraic Geometry and Algebraic Groups

An Introduction to Algebraic Geometry and Algebraic Groups
Author :
Publisher : Oxford University Press
Total Pages : 321
Release :
ISBN-10 : 9780199676163
ISBN-13 : 019967616X
Rating : 4/5 (63 Downloads)

Synopsis An Introduction to Algebraic Geometry and Algebraic Groups by : Meinolf Geck

An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.

Algebraic Functions and Projective Curves

Algebraic Functions and Projective Curves
Author :
Publisher : Springer Science & Business Media
Total Pages : 195
Release :
ISBN-10 : 9780387224459
ISBN-13 : 0387224459
Rating : 4/5 (59 Downloads)

Synopsis Algebraic Functions and Projective Curves by : David Goldschmidt

This book gives an introduction to algebraic functions and projective curves. It covers a wide range of material by dispensing with the machinery of algebraic geometry and proceeding directly via valuation theory to the main results on function fields. It also develops the theory of singular curves by studying maps to projective space, including topics such as Weierstrass points in characteristic p, and the Gorenstein relations for singularities of plane curves.