Weakly Differentiable Mappings between Manifolds

Weakly Differentiable Mappings between Manifolds
Author :
Publisher : American Mathematical Soc.
Total Pages : 88
Release :
ISBN-10 : 9780821840795
ISBN-13 : 0821840797
Rating : 4/5 (95 Downloads)

Synopsis Weakly Differentiable Mappings between Manifolds by : Piotr Hajłasz

The authors study Sobolev classes of weakly differentiable mappings $f: {\mathbb X}\rightarrow {\mathbb Y}$ between compact Riemannian manifolds without boundary. These mappings need not be continuous. They actually possess less regularity than the mappings in ${\mathcal W}{1, n}({\mathbb X}\, \, {\mathbb Y})\, $, $n=\mbox{dim}\, {\mathbb X}$. The central themes being discussed a

The Mapping Class Group from the Viewpoint of Measure Equivalence Theory

The Mapping Class Group from the Viewpoint of Measure Equivalence Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 206
Release :
ISBN-10 : 9780821841969
ISBN-13 : 0821841963
Rating : 4/5 (69 Downloads)

Synopsis The Mapping Class Group from the Viewpoint of Measure Equivalence Theory by : Yoshikata Kida

The author obtains some classification result for the mapping class groups of compact orientable surfaces in terms of measure equivalence. In particular, the mapping class groups of different closed surfaces cannot be measure equivalent. Moreover, the author gives various examples of discrete groups which are not measure equivalent to the mapping class groups. In the course of the proof, the author investigates amenability in a measurable sense for the actions of the mapping class group on the boundary at infinity of the curve complex and on the Thurston boundary and, using this investigation, proves that the mapping class group of a compact orientable surface is exact.

Handbook of Global Analysis

Handbook of Global Analysis
Author :
Publisher : Elsevier
Total Pages : 1243
Release :
ISBN-10 : 9780080556734
ISBN-13 : 0080556736
Rating : 4/5 (34 Downloads)

Synopsis Handbook of Global Analysis by : Demeter Krupka

This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents

The Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations

The Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations
Author :
Publisher : American Mathematical Soc.
Total Pages : 120
Release :
ISBN-10 : 9780821842508
ISBN-13 : 0821842501
Rating : 4/5 (08 Downloads)

Synopsis The Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations by : Salah-Eldin Mohammed

The main objective of this paper is to characterize the pathwise local structure of solutions of semilinear stochastic evolution equations and stochastic partial differential equations near stationary solutions.

Center Manifolds for Semilinear Equations with Non-Dense Domain and Applications to Hopf Bifurcation in Age Structured Models

Center Manifolds for Semilinear Equations with Non-Dense Domain and Applications to Hopf Bifurcation in Age Structured Models
Author :
Publisher : American Mathematical Soc.
Total Pages : 84
Release :
ISBN-10 : 9780821846537
ISBN-13 : 0821846531
Rating : 4/5 (37 Downloads)

Synopsis Center Manifolds for Semilinear Equations with Non-Dense Domain and Applications to Hopf Bifurcation in Age Structured Models by : Pierre Magal

Several types of differential equations, such as delay differential equations, age-structure models in population dynamics, evolution equations with boundary conditions, can be written as semilinear Cauchy problems with an operator which is not densely defined in its domain. The goal of this paper is to develop a center manifold theory for semilinear Cauchy problems with non-dense domain. Using Liapunov-Perron method and following the techniques of Vanderbauwhede et al. in treating infinite dimensional systems, the authors study the existence and smoothness of center manifolds for semilinear Cauchy problems with non-dense domain. As an application, they use the center manifold theorem to establish a Hopf bifurcation theorem for age structured models.

Toroidal Dehn Fillings on Hyperbolic 3-Manifolds

Toroidal Dehn Fillings on Hyperbolic 3-Manifolds
Author :
Publisher : American Mathematical Soc.
Total Pages : 154
Release :
ISBN-10 : 9780821841679
ISBN-13 : 082184167X
Rating : 4/5 (79 Downloads)

Synopsis Toroidal Dehn Fillings on Hyperbolic 3-Manifolds by : Cameron Gordon

The authors determine all hyperbolic $3$-manifolds $M$ admitting two toroidal Dehn fillings at distance $4$ or $5$. They show that if $M$ is a hyperbolic $3$-manifold with a torus boundary component $T 0$, and $r,s$ are two slopes on $T 0$ with $\Delta(r,s) = 4$ or $5$ such that $M(r)$ and $M(s)$ both contain an essential torus, then $M$ is either one of $14$ specific manifolds $M i$, or obtained from $M 1, M 2, M 3$ or $M {14}$ by attaching a solid torus to $\partial M i - T 0$.All the manifolds $M i$ are hyperbolic, and the authors show that only the first three can be embedded into $S3$. As a consequence, this leads to a complete classification of all hyperbolic knots in $S3$ admitting two toroidal surgeries with distance at least $4$.

Heisenberg Calculus and Spectral Theory of Hypoelliptic Operators on Heisenberg Manifolds

Heisenberg Calculus and Spectral Theory of Hypoelliptic Operators on Heisenberg Manifolds
Author :
Publisher : American Mathematical Soc.
Total Pages : 150
Release :
ISBN-10 : 9780821841488
ISBN-13 : 0821841483
Rating : 4/5 (88 Downloads)

Synopsis Heisenberg Calculus and Spectral Theory of Hypoelliptic Operators on Heisenberg Manifolds by : Raphael Ponge

This memoir deals with the hypoelliptic calculus on Heisenberg manifolds, including CR and contact manifolds. In this context the main differential operators at stake include the Hormander's sum of squares, the Kohn Laplacian, the horizontal sublaplacian, the CR conformal operators of Gover-Graham and the contact Laplacian. These operators cannot be elliptic and the relevant pseudodifferential calculus to study them is provided by the Heisenberg calculus of Beals-Greiner andTaylor.

The Interaction of Analysis and Geometry

The Interaction of Analysis and Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 354
Release :
ISBN-10 : 9780821840603
ISBN-13 : 0821840606
Rating : 4/5 (03 Downloads)

Synopsis The Interaction of Analysis and Geometry by : Victor I. Burenkov

Based on talks given at the International Conference on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak (Novosibirsk, 2004), this title includes topics such as geometry of spaces with bounded curvature in the sense of Alexandrov, quasiconformal mappings and mappings with bounded distortion, and nonlinear potential theory."