Volume Doubling Measures and Heat Kernel Estimates on Self-Similar Sets

Volume Doubling Measures and Heat Kernel Estimates on Self-Similar Sets
Author :
Publisher : American Mathematical Soc.
Total Pages : 110
Release :
ISBN-10 : 9780821842928
ISBN-13 : 0821842927
Rating : 4/5 (28 Downloads)

Synopsis Volume Doubling Measures and Heat Kernel Estimates on Self-Similar Sets by : Jun Kigami

This paper studies the following three problems. 1. When does a measure on a self-similar set have the volume doubling property with respect to a given distance? 2. Is there any distance on a self-similar set under which the contraction mappings have the prescribed values of contractions ratios? 3. When does a heat kernel on a self-similar set associated with a self-similar Dirichlet form satisfy the Li-Yau type sub-Gaussian diagonal estimate? These three problems turn out to be closely related. The author introduces a new class of self-similar set, called rationally ramified self-similar sets containing both the Sierpinski gasket and the (higher dimensional) Sierpinski carpet and gives complete solutions of the above three problems for this class. In particular, the volume doubling property is shown to be equivalent to the upper Li-Yau type sub-Gaussian diagonal estimate of a heat kernel.

Resistance Forms, Quasisymmetric Maps and Heat Kernel Estimates

Resistance Forms, Quasisymmetric Maps and Heat Kernel Estimates
Author :
Publisher : American Mathematical Soc.
Total Pages : 145
Release :
ISBN-10 : 9780821852996
ISBN-13 : 082185299X
Rating : 4/5 (96 Downloads)

Synopsis Resistance Forms, Quasisymmetric Maps and Heat Kernel Estimates by : Jun Kigami

Assume that there is some analytic structure, a differential equation or a stochastic process for example, on a metric space. To describe asymptotic behaviors of analytic objects, the original metric of the space may not be the best one. Every now and then one can construct a better metric which is somehow ``intrinsic'' with respect to the analytic structure and under which asymptotic behaviors of the analytic objects have nice expressions. The problem is when and how one can find such a metric. In this paper, the author considers the above problem in the case of stochastic processes associated with Dirichlet forms derived from resistance forms. The author's main concerns are the following two problems: (I) When and how to find a metric which is suitable for describing asymptotic behaviors of the heat kernels associated with such processes. (II) What kind of requirement for jumps of a process is necessary to ensure good asymptotic behaviors of the heat kernels associated with such processes.

Time Changes of the Brownian Motion: Poincaré Inequality, Heat Kernel Estimate and Protodistance

Time Changes of the Brownian Motion: Poincaré Inequality, Heat Kernel Estimate and Protodistance
Author :
Publisher : American Mathematical Soc.
Total Pages : 130
Release :
ISBN-10 : 9781470436209
ISBN-13 : 1470436205
Rating : 4/5 (09 Downloads)

Synopsis Time Changes of the Brownian Motion: Poincaré Inequality, Heat Kernel Estimate and Protodistance by : Jun Kigami

In this paper, time changes of the Brownian motions on generalized Sierpinski carpets including n-dimensional cube [0,1]n are studied. Intuitively time change corresponds to alteration to density of the medium where the heat flows. In case of the Brownian motion on [0,1]n, density of the medium is homogeneous and represented by the Lebesgue measure. The author's study includes densities which are singular to the homogeneous one. He establishes a rich class of measures called measures having weak exponential decay. This class contains measures which are singular to the homogeneous one such as Liouville measures on [0,1]2 and self-similar measures. The author shows the existence of time changed process and associated jointly continuous heat kernel for this class of measures. Furthermore, he obtains diagonal lower and upper estimates of the heat kernel as time tends to 0. In particular, to express the principal part of the lower diagonal heat kernel estimate, he introduces “protodistance” associated with the density as a substitute of ordinary metric. If the density has the volume doubling property with respect to the Euclidean metric, the protodistance is shown to produce metrics under which upper off-diagonal sub-Gaussian heat kernel estimate and lower near diagonal heat kernel estimate will be shown.

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II
Author :
Publisher : American Mathematical Soc.
Total Pages : 384
Release :
ISBN-10 : 9780821891483
ISBN-13 : 0821891480
Rating : 4/5 (83 Downloads)

Synopsis Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II by : David Carfi

This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoît Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry and various aspects of dynamical systems in applied mathematics and the applications to other sciences. Also included are articles discussing a variety of connections between these subjects and various areas of physics, engineering, computer science, technology, economics and finance, as well as of mathematics (including probability theory in relation with statistical physics and heat kernel estimates, geometric measure theory, partial differential equations in relation with condensed matter physics, global analysis on non-smooth spaces, the theory of billiards, harmonic analysis and spectral geometry). The companion volume (Contemporary Mathematics, Volume 600) focuses on the more mathematical aspects of fractal geometry and dynamical systems.

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs

Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 337
Release :
ISBN-10 : 9783110700855
ISBN-13 : 3110700859
Rating : 4/5 (55 Downloads)

Synopsis Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs by : Alexander Grigor'yan

The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.

Analysis, Probability And Mathematical Physics On Fractals

Analysis, Probability And Mathematical Physics On Fractals
Author :
Publisher : World Scientific
Total Pages : 594
Release :
ISBN-10 : 9789811215544
ISBN-13 : 9811215545
Rating : 4/5 (44 Downloads)

Synopsis Analysis, Probability And Mathematical Physics On Fractals by : Patricia Alonso Ruiz

In the 50 years since Mandelbrot identified the fractality of coastlines, mathematicians and physicists have developed a rich and beautiful theory describing the interplay between analytic, geometric and probabilistic aspects of the mathematics of fractals. Using classical and abstract analytic tools developed by Cantor, Hausdorff, and Sierpinski, they have sought to address fundamental questions: How can we measure the size of a fractal set? How do waves and heat travel on irregular structures? How are analysis, geometry and stochastic processes related in the absence of Euclidean smooth structure? What new physical phenomena arise in the fractal-like settings that are ubiquitous in nature?This book introduces background and recent progress on these problems, from both established leaders in the field and early career researchers. The book gives a broad introduction to several foundational techniques in fractal mathematics, while also introducing some specific new and significant results of interest to experts, such as that waves have infinite propagation speed on fractals. It contains sufficient introductory material that it can be read by new researchers or researchers from other areas who want to learn about fractal methods and results.

Geometry and Analysis of Metric Spaces via Weighted Partitions

Geometry and Analysis of Metric Spaces via Weighted Partitions
Author :
Publisher : Springer Nature
Total Pages : 164
Release :
ISBN-10 : 9783030541545
ISBN-13 : 3030541541
Rating : 4/5 (45 Downloads)

Synopsis Geometry and Analysis of Metric Spaces via Weighted Partitions by : Jun Kigami

The aim of these lecture notes is to propose a systematic framework for geometry and analysis on metric spaces. The central notion is a partition (an iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the text: It is shown that a weight corresponds to a metric if and only if the associated weighted graph is Gromov hyperbolic. Various relations between metrics and measures such as bilipschitz equivalence, quasisymmetry, Ahlfors regularity, and the volume doubling property are translated to relations between weights. In particular, it is shown that the volume doubling property between a metric and a measure corresponds to a quasisymmetry between two metrics in the language of weights. The Ahlfors regular conformal dimension of a compact metric space is characterized as the critical index of p-energies associated with the partition and the weight function corresponding to the metric. These notes should interest researchers and PhD students working in conformal geometry, analysis on metric spaces, and related areas.

Fractal Zeta Functions and Fractal Drums

Fractal Zeta Functions and Fractal Drums
Author :
Publisher : Springer
Total Pages : 685
Release :
ISBN-10 : 9783319447063
ISBN-13 : 3319447068
Rating : 4/5 (63 Downloads)

Synopsis Fractal Zeta Functions and Fractal Drums by : Michel L. Lapidus

This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics
Author :
Publisher : American Mathematical Soc.
Total Pages : 410
Release :
ISBN-10 : 9780821891476
ISBN-13 : 0821891472
Rating : 4/5 (76 Downloads)

Synopsis Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics by : David Carfi

This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.