Visualizing Categorical Data
Download Visualizing Categorical Data full books in PDF, epub, and Kindle. Read online free Visualizing Categorical Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Michael Friendly |
Publisher |
: SAS Press |
Total Pages |
: 0 |
Release |
: 2000 |
ISBN-10 |
: 1580256600 |
ISBN-13 |
: 9781580256605 |
Rating |
: 4/5 (00 Downloads) |
Synopsis Visualizing Categorical Data by : Michael Friendly
Graphical methods for quantitative data are well developed and widely used. However, until now with this comprehensive treatment, few graphical methods existed for categorical data. In this innovative book, the author presents many aspects of the relationships among variables, the adequacy of a fitted model, and possibly unusual features of the data that can best be seen and appreciated in an informative graphical display.
Author |
: Jörg Blasius |
Publisher |
: Academic Press |
Total Pages |
: 615 |
Release |
: 1998-02-09 |
ISBN-10 |
: 9780080543628 |
ISBN-13 |
: 0080543626 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Visualization of Categorical Data by : Jörg Blasius
A unique and timely monograph, Visualization of Categorical Data contains a useful balance of theoretical and practical material on this important new area. Top researchers in the field present the books four main topics: visualization, correspondence analysis, biplots and multidimensional scaling, and contingency table models.This volume discusses how surveys, which are employed in many different research areas, generate categorical data. It will be of great interest to anyone involved in collecting or analyzing categorical data.* Correspondence Analysis* Homogeneity Analysis* Loglinear and Association Models* Latent Class Analysis* Multidimensional Scaling* Cluster Analysis* Ideal Point Discriminant Analysis* CHAID* Formal Concept Analysis* Graphical Models
Author |
: Michael Friendly |
Publisher |
: CRC Press |
Total Pages |
: 700 |
Release |
: 2015-12-16 |
ISBN-10 |
: 9781498725866 |
ISBN-13 |
: 1498725864 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Discrete Data Analysis with R by : Michael Friendly
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical DataDiscrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical meth
Author |
: Max Kuhn |
Publisher |
: CRC Press |
Total Pages |
: 266 |
Release |
: 2019-07-25 |
ISBN-10 |
: 9781351609463 |
ISBN-13 |
: 1351609467 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Feature Engineering and Selection by : Max Kuhn
The process of developing predictive models includes many stages. Most resources focus on the modeling algorithms but neglect other critical aspects of the modeling process. This book describes techniques for finding the best representations of predictors for modeling and for nding the best subset of predictors for improving model performance. A variety of example data sets are used to illustrate the techniques along with R programs for reproducing the results.
Author |
: Kieran Healy |
Publisher |
: Princeton University Press |
Total Pages |
: 292 |
Release |
: 2018-12-18 |
ISBN-10 |
: 9780691181622 |
ISBN-13 |
: 0691181624 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Data Visualization by : Kieran Healy
An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader’s expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective “small multiple” plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the “tidyverse” of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions
Author |
: Hadley Wickham |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 521 |
Release |
: 2016-12-12 |
ISBN-10 |
: 9781491910368 |
ISBN-13 |
: 1491910364 |
Rating |
: 4/5 (68 Downloads) |
Synopsis R for Data Science by : Hadley Wickham
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Author |
: Rafael A. Irizarry |
Publisher |
: CRC Press |
Total Pages |
: 836 |
Release |
: 2019-11-20 |
ISBN-10 |
: 9781000708035 |
ISBN-13 |
: 1000708039 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Introduction to Data Science by : Rafael A. Irizarry
Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
Author |
: Claus O. Wilke |
Publisher |
: O'Reilly Media |
Total Pages |
: 390 |
Release |
: 2019-03-18 |
ISBN-10 |
: 9781492031055 |
ISBN-13 |
: 1492031054 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Fundamentals of Data Visualization by : Claus O. Wilke
Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options. This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization. Explore the basic concepts of color as a tool to highlight, distinguish, or represent a value Understand the importance of redundant coding to ensure you provide key information in multiple ways Use the book’s visualizations directory, a graphical guide to commonly used types of data visualizations Get extensive examples of good and bad figures Learn how to use figures in a document or report and how employ them effectively to tell a compelling story
Author |
: Leland Wilkinson |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 415 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9781475731002 |
ISBN-13 |
: 1475731000 |
Rating |
: 4/5 (02 Downloads) |
Synopsis The Grammar of Graphics by : Leland Wilkinson
Written for statisticians, computer scientists, geographers, research and applied scientists, and others interested in visualizing data, this book presents a unique foundation for producing almost every quantitative graphic found in scientific journals, newspapers, statistical packages, and data visualization systems. It was designed for a distributed computing environment, with special attention given to conserving computer code and system resources. While the tangible result of this work is a Java production graphics library, the text focuses on the deep structures involved in producing quantitative graphics from data. It investigates the rules that underlie pie charts, bar charts, scatterplots, function plots, maps, mosaics, and radar charts. These rules are abstracted from the work of Bertin, Cleveland, Kosslyn, MacEachren, Pinker, Tufte, Tukey, Tobler, and other theorists of quantitative graphics.
Author |
: Tamara Munzner |
Publisher |
: CRC Press |
Total Pages |
: 422 |
Release |
: 2014-12-01 |
ISBN-10 |
: 9781466508934 |
ISBN-13 |
: 1466508930 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Visualization Analysis and Design by : Tamara Munzner
Learn How to Design Effective Visualization SystemsVisualization Analysis and Design provides a systematic, comprehensive framework for thinking about visualization in terms of principles and design choices. The book features a unified approach encompassing information visualization techniques for abstract data, scientific visualization techniques