Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences
Author :
Publisher : Springer Science & Business Media
Total Pages : 299
Release :
ISBN-10 : 9781475757767
ISBN-13 : 147575776X
Rating : 4/5 (67 Downloads)

Synopsis Masters Theses in the Pure and Applied Sciences by : Wade H. Shafer

Masters Theses in the Pure and Applied Sciences was first conceived, published, and dis seminated by the Center for Information and Numerical Data Analysis and Synthesis, (CINDAS) *at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the ac tivity was transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volume were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 19 (thesis year 1974) a total of 10,045 theses titles from 20 Canadian and 209 United States universities. We are sure that this broader base for theses titles reported will greatly enhance the value of this important annual reference work. The organization of Volume 19 is identical to that of past years. It consists of theses titles arranged by discipline and by university within each discipline.

A Re-Evaluation of Finite-Element Models and Stress-Intensity Factors for Surface Cracks Emanating from Stress Concentrations

A Re-Evaluation of Finite-Element Models and Stress-Intensity Factors for Surface Cracks Emanating from Stress Concentrations
Author :
Publisher : Createspace Independent Publishing Platform
Total Pages : 34
Release :
ISBN-10 : 1722025824
ISBN-13 : 9781722025823
Rating : 4/5 (24 Downloads)

Synopsis A Re-Evaluation of Finite-Element Models and Stress-Intensity Factors for Surface Cracks Emanating from Stress Concentrations by : National Aeronautics and Space Administration (NASA)

A re-evaluation of the 3-D finite-element models and methods used to analyze surface crack at stress concentrations is presented. Previous finite-element models used by Raju and Newman for surface and corner cracks at holes were shown to have ill-shaped elements at the intersection of the hole and crack boundaries. These ill-shaped elements tended to make the model too stiff and, hence, gave lower stress-intensity factors near the hole-crack intersection than models without these elements. Improved models, without these ill-shaped elements, were developed for a surface crack at a circular hole and at a semi-circular edge notch. Stress-intensity factors were calculated by both the nodal-force and virtual-crack-closure methods. Both methods and different models gave essentially the same results. Comparisons made between the previously developed stress-intensity factor equations and the results from the improved models agreed well except for configurations with large notch-radii-to-plate-thickness ratios. Stress-intensity factors for a semi-elliptical surface crack located at the center of a semi-circular edge notch in a plate subjected to remote tensile loadings were calculated using the improved models. The ratio of crack depth to crack length ranged form 0.4 to 2; the ratio of crack depth to plate thickness ranged from 0.2 to 0.8; and the ratio of notch radius to the plate thickness ranged from 1 to 3. The models had about 15,000 degrees-of-freedom. Stress-intensity factors were calculated by using the nodal-force method. Tan, P. W. and Raju, I. S. and Shivakumar, K. N. and Newman, J. C., Jr. Langley Research Center RTOP 505-63-01-05...

Stress Concentration at Notches

Stress Concentration at Notches
Author :
Publisher : Springer
Total Pages : 510
Release :
ISBN-10 : 9783319445557
ISBN-13 : 3319445553
Rating : 4/5 (57 Downloads)

Synopsis Stress Concentration at Notches by : Mykhaylo P. Savruk

This book compiles solutions of linear theory of elasticity problems for isotropic and anisotropic bodies with sharp and rounded notches. It contains an overview of established and recent achievements, and presents the authors’ original solutions in the field considered with extensive discussion. The volume demonstrates through numerous, useful examples the effectiveness of singular integral equations for obtaining exact solutions of boundary problems of the theory of elasticity for bodies with cracks and notches. Incorporating analytical and numerical solutions of the problems of stress concentrations in solid bodies with crack-like defects, this volume is ideal for scientists and PhD students dealing with the problems of theory of elasticity and fracture mechanics.

Micromechanics of defects in solids

Micromechanics of defects in solids
Author :
Publisher : Springer Science & Business Media
Total Pages : 507
Release :
ISBN-10 : 9789401193061
ISBN-13 : 9401193061
Rating : 4/5 (61 Downloads)

Synopsis Micromechanics of defects in solids by : Toshio Mura

This book sterns from a course on Micromechanics that I started about fifteen years ago at Northwestern University. At that time, micro mechanics was a rather unfamiliar subject. Although I repeated the course every year, I was ne ver convinced that my notes have quite developed into a final manuscript because new topics emerged con stantly requiring revisions, and additions. I finally came to realize that if this is continued, then I will never complete the book to my total satisfaction. Meanwhile, T. Mori and I had coauthored a book in Micromechanics, published by Baifu-kan, Tokyo, in Japanese, entitled 1975. It received an extremely favorable response from students and researchers in Japan. This encouraged me to go ahead and publish my course notes in their latest version, as this book, which contains further development of the subject and is more comprehensive than the one published in Japanese. Micromechanics encompasses mechanics related to microstructures of materials. The method employed is a continuum theory of elasticity yet its applications cover a broad area relating to the mechanical behavior of materials: plasticity, fracture and fatigue, constitutive equa tions, composite materials, polycrystals, etc. These subjects are treated in this book by means of a powerful and unified method which is called the 'eigenstrain method. ' In particular, problems relating to inclusions and dislocations are most effectively analyzed by this method, and therefore, special emphasis is placed on these topics.

Evaluation of Stress-Intensity Factors Using General Finite-Element Models

Evaluation of Stress-Intensity Factors Using General Finite-Element Models
Author :
Publisher :
Total Pages : 25
Release :
ISBN-10 : OCLC:1251658993
ISBN-13 :
Rating : 4/5 (93 Downloads)

Synopsis Evaluation of Stress-Intensity Factors Using General Finite-Element Models by : IS. Raju

Finite-element methods are commonly used to evaluate cracked solids. Post-processing methods are used to extract Mode I stress-intensity factor values from finite-element analyses. These methods include the Crack-Opening-Displacement (COD) method, the Force method, the Virtual Crack Closure Technique (VCCT) and the Equivalent Domain Integral (EDI) method. The COD method, Force method and the VCCT appear to require that the finite-element mesh intersect the crack front in an orthogonal manner in order to obtain accurate stress-intensity factor values. The EDI does not appear to require this orthogonality with the crack front to obtain accurate stress intensity factor values. The objectives of this study are to determine if accurate stress intensity factor values can be obtained from finite-element models that lack orthogonality with the crack front and, if accurate values cannot be obtained, to modify the extraction methods so that accurate stress-intensity factor values can be obtained from models without orthogonality at the crack front.

Computational Methods in Nonlinear Structural and Solid Mechanics

Computational Methods in Nonlinear Structural and Solid Mechanics
Author :
Publisher : Elsevier
Total Pages : 472
Release :
ISBN-10 : 9781483145648
ISBN-13 : 1483145646
Rating : 4/5 (48 Downloads)

Synopsis Computational Methods in Nonlinear Structural and Solid Mechanics by : Ahmed K. Noor

Computational Methods in Nonlinear Structural and Solid Mechanics covers the proceedings of the Symposium on Computational Methods in Nonlinear Structural and Solid Mechanics. The book covers the development of efficient discretization approaches; advanced numerical methods; improved programming techniques; and applications of these developments to nonlinear analysis of structures and solids. The chapters of the text are organized into 10 parts according to the issue they tackle. The first part deals with nonlinear mathematical theories and formulation aspects, while the second part covers computational strategies for nonlinear programs. Part 3 deals with time integration and numerical solution of nonlinear algebraic equations, while Part 4 discusses material characterization and nonlinear fracture mechanics, and Part 5 tackles nonlinear interaction problems. The sixth part discusses seismic response and nonlinear analysis of concrete structure, and the seventh part tackles nonlinear problems for nuclear reactors. Part 8 covers crash dynamics and impact problems, while Part 9 deals with nonlinear problems of fibrous composites and advanced nonlinear applications. The last part discusses computerized symbolic manipulation and nonlinear analysis software systems. The book will be of great interest to numerical analysts, computer scientists, structural engineers, and other professionals concerned with nonlinear structural and solid mechanics.