Uniform Output Regulation of Nonlinear Systems

Uniform Output Regulation of Nonlinear Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 176
Release :
ISBN-10 : 9780817644659
ISBN-13 : 0817644652
Rating : 4/5 (59 Downloads)

Synopsis Uniform Output Regulation of Nonlinear Systems by : Alexey Victorovich Pavlov

This study of the nonlinear output regulation problem embraces local as well as global cases, covering such aspects as controller design and practical implementation issues. From the reviews: "The authors treat the problem of output regulation for a nonlinear control system...[they] develop a global approach to output regulation along familiar lines....I found the book to be ambitious and rigorous, tackling some hard conceptual issues." --IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Uniform Output Regulation of Nonlinear Systems

Uniform Output Regulation of Nonlinear Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 188
Release :
ISBN-10 : 0817644458
ISBN-13 : 9780817644451
Rating : 4/5 (58 Downloads)

Synopsis Uniform Output Regulation of Nonlinear Systems by : Alexey Pavlov

This study of the nonlinear output regulation problem embraces local as well as global cases, covering such aspects as controller design and practical implementation issues. From the reviews: "The authors treat the problem of output regulation for a nonlinear control system...[they] develop a global approach to output regulation along familiar lines....I found the book to be ambitious and rigorous, tackling some hard conceptual issues." --IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Nonlinear Output Regulation

Nonlinear Output Regulation
Author :
Publisher : SIAM
Total Pages : 334
Release :
ISBN-10 : 0898718686
ISBN-13 : 9780898718683
Rating : 4/5 (86 Downloads)

Synopsis Nonlinear Output Regulation by : Jie Huang

Nonlinear Output Regulation: Theory and Applications provides a comprehensive and in-depth treatment of the nonlinear output regulation problem. It contains up-to-date research results and algorithms and tools for approaching and solving the output regulation problem and related problems, such as robust stabilization of nonlinear systems. Output regulation is a general mathematical formulation of many control problems encountered in daily life including cruise control of automobiles, landing and takeoff of aircraft, manipulation of robot arms, orbiting of satellites, and speed regulation of motors. The book provides a self-contained treatment starting with an introduction to the linear output regulation problem and a review of the fundamental nonlinear control theory. The author's presentation strikes a balance between the theoretical foundation of the problem and the practical applications of the theory. The book is accompanied by many examples, including practical case studies with numerical simulations based on MATLAB/SIMULINK. Audience: graduate students, professors, and researchers in applied mathematics, electrical engineering, mechanical engineering, and aerospace engineering. The book can be used in a graduate-level control systems course as well as by control design engineers in industry.

Stabilization and Regulation of Nonlinear Systems

Stabilization and Regulation of Nonlinear Systems
Author :
Publisher : Springer
Total Pages : 365
Release :
ISBN-10 : 9783319088341
ISBN-13 : 3319088343
Rating : 4/5 (41 Downloads)

Synopsis Stabilization and Regulation of Nonlinear Systems by : Zhiyong Chen

The core of this textbook is a systematic and self-contained treatment of the nonlinear stabilization and output regulation problems. Its coverage embraces both fundamental concepts and advanced research outcomes and includes many numerical and practical examples. Several classes of important uncertain nonlinear systems are discussed. The state-of-the art solution presented uses robust and adaptive control design ideas in an integrated approach which demonstrates connections between global stabilization and global output regulation allowing both to be treated as stabilization problems. Stabilization and Regulation of Nonlinear Systems takes advantage of rich new results to give students up-to-date instruction in the central design problems of nonlinear control, problems which are a driving force behind the furtherance of modern control theory and its application. The diversity of systems in which stabilization and output regulation become significant concerns in the mathematical formulation of practical control solutions—whether in disturbance rejection in flying vehicles or synchronization of Lorenz systems with harmonic systems—makes the text relevant to readers from a wide variety of backgrounds. Many exercises are provided to facilitate study and solutions are freely available to instructors via a download from springerextras.com. Striking a balance between rigorous mathematical treatment and engineering practicality, Stabilization and Regulation of Nonlinear Systems is an ideal text for graduate students from many engineering and applied-mathematical disciplines seeking a contemporary course in nonlinear control. Practitioners and academic theorists will also find this book a useful reference on recent thinking in this field.

Output Regulation of Uncertain Nonlinear Systems

Output Regulation of Uncertain Nonlinear Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 132
Release :
ISBN-10 : 9781461220206
ISBN-13 : 1461220203
Rating : 4/5 (06 Downloads)

Synopsis Output Regulation of Uncertain Nonlinear Systems by : Christopher I. Byrnes

The problem of controlling the output of a system so as to achieve asymptotic tracking of prescribed trajectories and/or asymptotic re jection of undesired disturbances is a central problem in control the ory. A classical setup in which the problem was posed and success fully addressed - in the context of linear, time-invariant and finite dimensional systems - is the one in which the exogenous inputs, namely commands and disturbances, may range over the set of all possible trajectories ofa given autonomous linear system, commonly known as the exogeneous system or, more the exosystem. The case when the exogeneous system is a harmonic oscillator is, of course, classical. Even in this special case, the difference between state and error measurement feedback in the problem ofoutput reg ulation is profound. To know the initial condition of the exosystem is to know the amplitude and phase of the corresponding sinusoid. On the other hand, to solve the output regulation problem in this case with only error measurement feedback is to track, or attenu ate, a sinusoid ofknown frequency but with unknown amplitude and phase. This is in sharp contrast with alternative approaches, such as exact output tracking, where in lieu of the assumption that a signal is within a class of signals generated by an exogenous system, one instead assumes complete knowledge of the past, present and future time history of the trajectory to be tracked.

Perspectives in Mathematical System Theory, Control, and Signal Processing

Perspectives in Mathematical System Theory, Control, and Signal Processing
Author :
Publisher : Springer Science & Business Media
Total Pages : 391
Release :
ISBN-10 : 9783540939177
ISBN-13 : 3540939172
Rating : 4/5 (77 Downloads)

Synopsis Perspectives in Mathematical System Theory, Control, and Signal Processing by : Jan C. Willems

This Festschrift, published on the occasion of the sixtieth birthday of Yutaka - mamoto (‘YY’ as he is occasionally casually referred to), contains a collection of articles by friends, colleagues, and former Ph.D. students of YY. They are a tribute to his friendship and his scienti?c vision and oeuvre, which has been a source of inspiration to the authors. Yutaka Yamamoto was born in Kyoto, Japan, on March 29, 1950. He studied applied mathematics and general engineering science at the Department of Applied Mathematics and Physics of Kyoto University, obtaining the B.S. and M.Sc. degrees in 1972 and 1974. His M.Sc. work was done under the supervision of Professor Yoshikazu Sawaragi. In 1974, he went to the Center for Mathematical System T- ory of the University of Florida in Gainesville. He obtained the M.Sc. and Ph.D. degrees, both in Mathematics, in 1976 and 1978, under the direction of Professor Rudolf Kalman.

Lectures in Feedback Design for Multivariable Systems

Lectures in Feedback Design for Multivariable Systems
Author :
Publisher : Springer
Total Pages : 414
Release :
ISBN-10 : 9783319420318
ISBN-13 : 3319420313
Rating : 4/5 (18 Downloads)

Synopsis Lectures in Feedback Design for Multivariable Systems by : Alberto Isidori

This book focuses on methods that relate, in one form or another, to the “small-gain theorem”. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. With worked examples throughout, it includes both introductory material and more advanced topics. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory. In order to deepen readers’ understanding, simpler single-input–single-output systems generally precede treatment of more complex multi-input–multi-output (MIMO) systems and linear systems precede nonlinear systems. This approach is used throughout, including in the final chapters, which explain the latest advanced ideas governing the stabilization, regulation, and tracking of nonlinear MIMO systems. Two major design problems are considered, both in the presence of model uncertainties: asymptotic stabilization with a “guaranteed region of attraction” of a given equilibrium point and asymptotic rejection of the effect of exogenous (disturbance) inputs on selected regulated outputs. Much of the introductory instructional material in this book has been developed for teaching students, while the final coverage of nonlinear MIMO systems offers readers a first coordinated treatment of completely novel results. The worked examples presented provide the instructor with ready-to-use material to help students to understand the mathematical theory. Readers should be familiar with the fundamentals of linear-systems and control theory. This book is a valuable resource for students following postgraduate programs in systems and control, as well as engineers working on the control of robotic, mechatronic and power systems.

Nonlinear Systems

Nonlinear Systems
Author :
Publisher : Springer
Total Pages : 241
Release :
ISBN-10 : 9783319303574
ISBN-13 : 3319303570
Rating : 4/5 (74 Downloads)

Synopsis Nonlinear Systems by : Nathan van de Wouw

This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on important open problems with contributions that represent the state of the art in nonlinear control.