Understanding Complex Datasets
Download Understanding Complex Datasets full books in PDF, epub, and Kindle. Read online free Understanding Complex Datasets ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: David Skillicorn |
Publisher |
: CRC Press |
Total Pages |
: 268 |
Release |
: 2007-05-17 |
ISBN-10 |
: 9781584888338 |
ISBN-13 |
: 1584888334 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Understanding Complex Datasets by : David Skillicorn
Making obscure knowledge about matrix decompositions widely available, Understanding Complex Datasets: Data Mining with Matrix Decompositions discusses the most common matrix decompositions and shows how they can be used to analyze large datasets in a broad range of application areas. Without having to understand every mathematical detail, the book
Author |
: Jure Leskovec |
Publisher |
: Cambridge University Press |
Total Pages |
: 480 |
Release |
: 2014-11-13 |
ISBN-10 |
: 9781107077232 |
ISBN-13 |
: 1107077230 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Mining of Massive Datasets by : Jure Leskovec
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Author |
: Dzejla Medjedovic |
Publisher |
: Simon and Schuster |
Total Pages |
: 302 |
Release |
: 2022-08-16 |
ISBN-10 |
: 9781638356561 |
ISBN-13 |
: 1638356564 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Algorithms and Data Structures for Massive Datasets by : Dzejla Medjedovic
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Author |
: Michael R. Peres |
Publisher |
: Taylor & Francis |
Total Pages |
: 880 |
Release |
: 2013-05-29 |
ISBN-10 |
: 9781136106149 |
ISBN-13 |
: 1136106146 |
Rating |
: 4/5 (49 Downloads) |
Synopsis The Focal Encyclopedia of Photography by : Michael R. Peres
*Searchable CD ROM containing the entire book (including images) *Over 450 color images, plus never before published images provided by the George Eastman House collection, as well as images from Ansel Adams, Howard Schatz, and Jerry Uelsmann to name just a few The role and value of the picture cannot be matched for accuracy or impact. This comprehensive treatise, featuring the history and historical processes of photography, contemporary applications, and the new and evolving digital technologies, will provide the most accurate technical synopsis of the current, as well as early worlds of photography ever compiled. This Encyclopedia, produced by a team of world renown practicing experts, shares in highly detailed descriptions, the core concepts and facts relative to anything photographic. This Fourth edition of the Focal Encyclopedia serves as the definitive reference for students and practitioners of photography worldwide, expanding on the award winning 3rd edition. In addition to Michael Peres (Editor in Chief), the editors are: Franziska Frey (Digital Photography), J. Tomas Lopez (Contemporary Issues), David Malin (Photography in Science), Mark Osterman (Process Historian), Grant Romer (History and the Evolution of Photography), Nancy M. Stuart (Major Themes and Photographers of the 20th Century), and Scott Williams (Photographic Materials and Process Essentials)
Author |
: Hadley Wickham |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 521 |
Release |
: 2016-12-12 |
ISBN-10 |
: 9781491910368 |
ISBN-13 |
: 1491910364 |
Rating |
: 4/5 (68 Downloads) |
Synopsis R for Data Science by : Hadley Wickham
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Author |
: James Seligman |
Publisher |
: Lulu.com |
Total Pages |
: 252 |
Release |
: 2020-02-17 |
ISBN-10 |
: 9780244563882 |
ISBN-13 |
: 0244563888 |
Rating |
: 4/5 (82 Downloads) |
Synopsis artificial Intelligence / Machine Learning In Marketing by : James Seligman
The theory and practice of AI and ML in marketing saving time, money
Author |
: |
Publisher |
: Academic Press |
Total Pages |
: 388 |
Release |
: 2013-10-15 |
ISBN-10 |
: 9780124078918 |
ISBN-13 |
: 0124078915 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Using Secondary Datasets to Understand Persons with Developmental Disabilities and their Families by :
International Review of Research in Developmental Disabilities is an ongoing scholarly look at research into the causes, effects, classification systems, syndromes, etc. of developmental disabilities. Contributors come from wide-ranging perspectives, including genetics, psychology, education, and other health and behavioral sciences. - Provides the most recent scholarly research in the study of developmental disabilities - A vast range of perspectives is offered, and many topics are covered - An excellent resource for academic researchers
Author |
: Robert Johnson |
Publisher |
: HiTeX Press |
Total Pages |
: 206 |
Release |
: 2024-10-27 |
ISBN-10 |
: PKEY:6610000663033 |
ISBN-13 |
: |
Rating |
: 4/5 (33 Downloads) |
Synopsis Introduction to Explainable AI (XAI) by : Robert Johnson
"Introduction to Explainable AI (XAI): Making AI Understandable" is an essential resource for anyone seeking to understand the burgeoning field of explainable artificial intelligence. As AI systems become integral to critical decision-making processes across industries, the ability to interpret and comprehend their outputs becomes increasingly vital. This book offers a comprehensive exploration of XAI, delving into its foundational concepts, diverse techniques, and pivotal applications. It strives to demystify complex AI behaviors, ensuring that stakeholders across sectors can engage with AI technologies confidently and responsibly. Structured to cater to both beginners and those with an existing interest in AI, this book covers the spectrum of XAI topics, from model-specific approaches and interpretable machine learning to the ethical and societal implications of AI transparency. Readers will be equipped with practical insights into the tools and frameworks available for developing explainable models, alongside an understanding of the challenges and limitations inherent in the field. As we look toward the future, the book also addresses emerging trends and research directions, positioning itself as a definitive guide to navigating the evolving landscape of XAI. This book stands as an invaluable reference for students, practitioners, and policy makers alike, offering a balanced blend of theory and practical guidance. By focusing on the synergy between humans and machines through explainability, it underscores the importance of building AI systems that are not only powerful but also trustworthy and aligned with societal values.
Author |
: Harvey J. Miller |
Publisher |
: CRC Press |
Total Pages |
: 408 |
Release |
: 2001-10-11 |
ISBN-10 |
: UOM:39015053172154 |
ISBN-13 |
: |
Rating |
: 4/5 (54 Downloads) |
Synopsis Geographic Data Mining and Knowledge Discovery by : Harvey J. Miller
Advances in automated data collection are creating massive databases and a whole new field, Knowledge Discovery Databases (KDD), has emerged to develop new methods of managing and exploiting them. Geographic Data Mining and Knowledge Discovery is the interrogation of large databases using efficient computational methods. The unique challenges brought about by the storing of massive geographical databases - from high resolution satellite-based systems to data from intelligent transportation systems, for example - has led to the field of Geographical Knowledge Discovery (GKD). Geographic or spatial data mining is the exploration of these geographical information databases. Developed out of contributions to the highly-respected Varenius Project in 1999, this collection will be the definitive volume focusing on GKD and addresses the special challenges to be found in knowledge discovery and data mining from geographic databases.
Author |
: Bojan Kolosnjaji |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 358 |
Release |
: 2024-10-31 |
ISBN-10 |
: 9781805123552 |
ISBN-13 |
: 1805123556 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Artificial Intelligence for Cybersecurity by : Bojan Kolosnjaji
Gain well-rounded knowledge of AI methods in cybersecurity and obtain hands-on experience in implementing them to bring value to your organization Key Features Familiarize yourself with AI methods and approaches and see how they fit into cybersecurity Learn how to design solutions in cybersecurity that include AI as a key feature Acquire practical AI skills using step-by-step exercises and code examples Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionArtificial intelligence offers data analytics methods that enable us to efficiently recognize patterns in large-scale data. These methods can be applied to various cybersecurity problems, from authentication and the detection of various types of cyberattacks in computer networks to the analysis of malicious executables. Written by a machine learning expert, this book introduces you to the data analytics environment in cybersecurity and shows you where AI methods will fit in your cybersecurity projects. The chapters share an in-depth explanation of the AI methods along with tools that can be used to apply these methods, as well as design and implement AI solutions. You’ll also examine various cybersecurity scenarios where AI methods are applicable, including exercises and code examples that’ll help you effectively apply AI to work on cybersecurity challenges. The book also discusses common pitfalls from real-world applications of AI in cybersecurity issues and teaches you how to tackle them. By the end of this book, you’ll be able to not only recognize where AI methods can be applied, but also design and execute efficient solutions using AI methods.What you will learn Recognize AI as a powerful tool for intelligence analysis of cybersecurity data Explore all the components and workflow of an AI solution Find out how to design an AI-based solution for cybersecurity Discover how to test various AI-based cybersecurity solutions Evaluate your AI solution and describe its advantages to your organization Avoid common pitfalls and difficulties when implementing AI solutions Who this book is for This book is for machine learning practitioners looking to apply their skills to overcome cybersecurity challenges. Cybersecurity workers who want to leverage machine learning methods will also find this book helpful. Fundamental concepts of machine learning and beginner-level knowledge of Python programming are needed to understand the concepts present in this book. Whether you’re a student or an experienced professional, this book offers a unique and valuable learning experience that will enable you to protect your network and data against the ever-evolving threat landscape.