Understanding And Applying Basic Statistical Methods Using R
Download Understanding And Applying Basic Statistical Methods Using R full books in PDF, epub, and Kindle. Read online free Understanding And Applying Basic Statistical Methods Using R ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Rand R. Wilcox |
Publisher |
: John Wiley & Sons |
Total Pages |
: 531 |
Release |
: 2016-05-16 |
ISBN-10 |
: 9781119061410 |
ISBN-13 |
: 1119061415 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Understanding and Applying Basic Statistical Methods Using R by : Rand R. Wilcox
Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.
Author |
: Rand R. Wilcox |
Publisher |
: Gulf Professional Publishing |
Total Pages |
: 688 |
Release |
: 2003-01-06 |
ISBN-10 |
: 0127515410 |
ISBN-13 |
: 9780127515410 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Applying Contemporary Statistical Techniques by : Rand R. Wilcox
Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible. Highlights: * Assumes no previous training in statistics * Explains when and why modern methods provide more accurate results * Provides simple descriptions of when and why conventional methods can be highly unsatisfactory * Covers the latest developments on multiple comparisons * Includes recent advances in risk-based methods * Features many illustrations and examples using data from real studies * Describes and illustrates easy-to-use s-plus functions for applying cutting-edge techniques "The book is quite unique in that it offers a lot of up-to-date statistical tools. No other book at this level comes close in this aspect." Xuming He -University of Illinois, Urbana
Author |
: Morgan Holland & |
Publisher |
: Scientific e-Resources |
Total Pages |
: 303 |
Release |
: 2019-07-04 |
ISBN-10 |
: 9781839473371 |
ISBN-13 |
: 1839473371 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Understanding & Applying Basic Statistical Methods Using R by : Morgan Holland &
Understanding and Applying Basic Statistical Methods Using R remarkably conquers any hindrance between propels in the measurable writing and methods routinely utilized by non-analysts. Giving a theoretical premise to understanding the relative benefits and uses of these methods, the book highlights current bits of knowledge and advances applicable to fundamental systems regarding managing non-ordinariness, exceptions, heteroscedasticity (unequal changes), and curvature. Including a manual for R, the book utilizes R programming to investigate starting factual ideas and standard methods for managing known issues related with exemplary procedures. Altogether classroom tried, the book incorporates segments that attention on either R programming or computational points of interest to enable the reader to wind up noticeably familiar with fundamental ideas and standards basic regarding understanding and applying the numerous methods as of now accessible.
Author |
: Peter Dalgaard |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 370 |
Release |
: 2008-06-27 |
ISBN-10 |
: 9780387790541 |
ISBN-13 |
: 0387790543 |
Rating |
: 4/5 (41 Downloads) |
Synopsis Introductory Statistics with R by : Peter Dalgaard
This book provides an elementary-level introduction to R, targeting both non-statistician scientists in various fields and students of statistics. The main mode of presentation is via code examples with liberal commenting of the code and the output, from the computational as well as the statistical viewpoint. Brief sections introduce the statistical methods before they are used. A supplementary R package can be downloaded and contains the data sets. All examples are directly runnable and all graphics in the text are generated from the examples. The statistical methodology covered includes statistical standard distributions, one- and two-sample tests with continuous data, regression analysis, one-and two-way analysis of variance, regression analysis, analysis of tabular data, and sample size calculations. In addition, the last four chapters contain introductions to multiple linear regression analysis, linear models in general, logistic regression, and survival analysis.
Author |
: Daniel Navarro |
Publisher |
: Lulu.com |
Total Pages |
: 617 |
Release |
: 2013-01-13 |
ISBN-10 |
: 9781326189723 |
ISBN-13 |
: 1326189727 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Learning Statistics with R by : Daniel Navarro
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Author |
: Rand R. Wilcox |
Publisher |
: John Wiley & Sons |
Total Pages |
: 502 |
Release |
: 2016-05-10 |
ISBN-10 |
: 9781119061403 |
ISBN-13 |
: 1119061407 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Understanding and Applying Basic Statistical Methods Using R by : Rand R. Wilcox
Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.
Author |
: Michael J. Crawley |
Publisher |
: John Wiley & Sons |
Total Pages |
: 953 |
Release |
: 2007-06-13 |
ISBN-10 |
: 0470515066 |
ISBN-13 |
: 9780470515068 |
Rating |
: 4/5 (66 Downloads) |
Synopsis The R Book by : Michael J. Crawley
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Author |
: Babak Shahbaba |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 355 |
Release |
: 2011-12-15 |
ISBN-10 |
: 9781461413028 |
ISBN-13 |
: 1461413028 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Biostatistics with R by : Babak Shahbaba
Biostatistics with R is designed around the dynamic interplay among statistical methods, their applications in biology, and their implementation. The book explains basic statistical concepts with a simple yet rigorous language. The development of ideas is in the context of real applied problems, for which step-by-step instructions for using R and R-Commander are provided. Topics include data exploration, estimation, hypothesis testing, linear regression analysis, and clustering with two appendices on installing and using R and R-Commander. A novel feature of this book is an introduction to Bayesian analysis. This author discusses basic statistical analysis through a series of biological examples using R and R-Commander as computational tools. The book is ideal for instructors of basic statistics for biologists and other health scientists. The step-by-step application of statistical methods discussed in this book allows readers, who are interested in statistics and its application in biology, to use the book as a self-learning text.
Author |
: Michael J. Crawley |
Publisher |
: John Wiley & Sons |
Total Pages |
: 348 |
Release |
: 2005-05-06 |
ISBN-10 |
: 0470022981 |
ISBN-13 |
: 9780470022986 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Statistics by : Michael J. Crawley
Computer software is an essential tool for many statistical modelling and data analysis techniques, aiding in the implementation of large data sets in order to obtain useful results. R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best-selling title Statistical Computing. * Features step-by-step instructions that assume no mathematics, statistics or programming background, helping the non-statistician to fully understand the methodology. * Uses a series of realistic examples, developing step-wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. * The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. * Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t-tests and chi-squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. * Includes numerous worked examples and exercises within each chapter. * Accompanied by a website featuring worked examples, data sets, exercises and solutions: http://www.imperial.ac.uk/bio/research/crawley/statistics Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.
Author |
: Andy Field |
Publisher |
: SAGE |
Total Pages |
: 993 |
Release |
: 2012-03-07 |
ISBN-10 |
: 9781446258460 |
ISBN-13 |
: 1446258467 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Discovering Statistics Using R by : Andy Field
Keeping the uniquely humorous and self-deprecating style that has made students across the world fall in love with Andy Field′s books, Discovering Statistics Using R takes students on a journey of statistical discovery using R, a free, flexible and dynamically changing software tool for data analysis that is becoming increasingly popular across the social and behavioural sciences throughout the world. The journey begins by explaining basic statistical and research concepts before a guided tour of the R software environment. Next you discover the importance of exploring and graphing data, before moving onto statistical tests that are the foundations of the rest of the book (for example correlation and regression). You will then stride confidently into intermediate level analyses such as ANOVA, before ending your journey with advanced techniques such as MANOVA and multilevel models. Although there is enough theory to help you gain the necessary conceptual understanding of what you′re doing, the emphasis is on applying what you learn to playful and real-world examples that should make the experience more fun than you might expect. Like its sister textbooks, Discovering Statistics Using R is written in an irreverent style and follows the same ground-breaking structure and pedagogical approach. The core material is augmented by a cast of characters to help the reader on their way, together with hundreds of examples, self-assessment tests to consolidate knowledge, and additional website material for those wanting to learn more. Given this book′s accessibility, fun spirit, and use of bizarre real-world research it should be essential for anyone wanting to learn about statistics using the freely-available R software.