Undergraduate Convexity
Download Undergraduate Convexity full books in PDF, epub, and Kindle. Read online free Undergraduate Convexity ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Niels Lauritzen |
Publisher |
: World Scientific |
Total Pages |
: 298 |
Release |
: 2013 |
ISBN-10 |
: 9789814412520 |
ISBN-13 |
: 981441252X |
Rating |
: 4/5 (20 Downloads) |
Synopsis Undergraduate Convexity by : Niels Lauritzen
Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples.Starting from linear inequalities and FourierOCoMotzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the KarushOCoKuhnOCoTucker conditions, duality and an interior point algorithm.
Author |
: Mikkel Slot Nielsen |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 195 |
Release |
: 2016-09-08 |
ISBN-10 |
: 9789813143661 |
ISBN-13 |
: 9813143665 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Undergraduate Convexity: Problems And Solutions by : Mikkel Slot Nielsen
This solutions manual thoroughly goes through the exercises found in Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker. Several solutions are accompanied by detailed illustrations and intuitive explanations. This book will pave the way for students to easily grasp the multitude of solution methods and aspects of convex sets and convex functions. Companion Textbook here
Author |
: Erhan Çınlar |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 164 |
Release |
: 2013-01-04 |
ISBN-10 |
: 9781461452577 |
ISBN-13 |
: 1461452570 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Real and Convex Analysis by : Erhan Çınlar
This book offers a first course in analysis for scientists and engineers. It can be used at the advanced undergraduate level or as part of the curriculum in a graduate program. The book is built around metric spaces. In the first three chapters, the authors lay the foundational material and cover the all-important “four-C’s”: convergence, completeness, compactness, and continuity. In subsequent chapters, the basic tools of analysis are used to give brief introductions to differential and integral equations, convex analysis, and measure theory. The treatment is modern and aesthetically pleasing. It lays the groundwork for the needs of classical fields as well as the important new fields of optimization and probability theory.
Author |
: Alexander Barvinok |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 378 |
Release |
: 2002-11-19 |
ISBN-10 |
: 9780821829684 |
ISBN-13 |
: 0821829688 |
Rating |
: 4/5 (84 Downloads) |
Synopsis A Course in Convexity by : Alexander Barvinok
Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.
Author |
: J.L. Troutman |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 373 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781468401585 |
ISBN-13 |
: 1468401580 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Variational Calculus with Elementary Convexity by : J.L. Troutman
The calculus of variations, whose origins can be traced to the works of Aristotle and Zenodoros, is now Ii vast repository supplying fundamental tools of exploration not only to the mathematician, but-as evidenced by current literature-also to those in most branches of science in which mathematics is applied. (Indeed, the macroscopic statements afforded by variational principles may provide the only valid mathematical formulation of many physical laws. ) As such, it retains the spirit of natural philosophy common to most mathematical investigations prior to this century. How ever, it is a discipline in which a single symbol (b) has at times been assigned almost mystical powers of operation and discernment, not readily subsumed into the formal structures of modern mathematics. And it is a field for which it is generally supposed that most questions motivating interest in the subject will probably not be answerable at the introductory level of their formulation. In earlier articles,1,2 it was shown through several examples that a complete characterization of the solution of optimization problems may be available by elementary methods, and it is the purpose of this work to explore further the convexity which underlay these individual successes in the context of a full introductory treatment of the theory of the variational calculus. The required convexity is that determined through Gateaux variations, which can be defined in any real linear space and which provide an unambiguous foundation for the theory.
Author |
: John L. Troutman |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 471 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461207375 |
ISBN-13 |
: 1461207371 |
Rating |
: 4/5 (75 Downloads) |
Synopsis Variational Calculus and Optimal Control by : John L. Troutman
An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.
Author |
: Vitor Balestro |
Publisher |
: Springer Nature |
Total Pages |
: 1195 |
Release |
: |
ISBN-10 |
: 9783031505072 |
ISBN-13 |
: 3031505077 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Convexity from the Geometric Point of View by : Vitor Balestro
Author |
: Steven G. Krantz |
Publisher |
: CRC Press |
Total Pages |
: 177 |
Release |
: 2014-10-20 |
ISBN-10 |
: 9781498706377 |
ISBN-13 |
: 1498706371 |
Rating |
: 4/5 (77 Downloads) |
Synopsis Convex Analysis by : Steven G. Krantz
Convexity is an ancient idea going back to Archimedes. Used sporadically in the mathematical literature over the centuries, today it is a flourishing area of research and a mathematical subject in its own right. Convexity is used in optimization theory, functional analysis, complex analysis, and other parts of mathematics. Convex Analysis introduces analytic tools for studying convexity and provides analytical applications of the concept. The book includes a general background on classical geometric theory which allows readers to obtain a glimpse of how modern mathematics is developed and how geometric ideas may be studied analytically. Featuring a user-friendly approach, the book contains copious examples and plenty of figures to illustrate the ideas presented. It also includes an appendix with the technical tools needed to understand certain arguments in the book, a tale of notation, and a thorough glossary to help readers with unfamiliar terms. This book is a definitive introductory text to the concept of convexity in the context of mathematical analysis and a suitable resource for students and faculty alike.
Author |
: Dimitri Bertsekas |
Publisher |
: Athena Scientific |
Total Pages |
: 256 |
Release |
: 2009-06-01 |
ISBN-10 |
: 9781886529311 |
ISBN-13 |
: 1886529310 |
Rating |
: 4/5 (11 Downloads) |
Synopsis Convex Optimization Theory by : Dimitri Bertsekas
An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).
Author |
: Nisheeth K. Vishnoi |
Publisher |
: Cambridge University Press |
Total Pages |
: 314 |
Release |
: 2021-10-07 |
ISBN-10 |
: 9781108633994 |
ISBN-13 |
: 1108633994 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Algorithms for Convex Optimization by : Nisheeth K. Vishnoi
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.