Undergraduate Analysis

Undergraduate Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 651
Release :
ISBN-10 : 9781475726985
ISBN-13 : 1475726988
Rating : 4/5 (85 Downloads)

Synopsis Undergraduate Analysis by : Serge Lang

This logically self-contained introduction to analysis centers around those properties that have to do with uniform convergence and uniform limits in the context of differentiation and integration. From the reviews: "This material can be gone over quickly by the really well-prepared reader, for it is one of the book’s pedagogical strengths that the pattern of development later recapitulates this material as it deepens and generalizes it." --AMERICAN MATHEMATICAL SOCIETY

Problems and Solutions for Undergraduate Analysis

Problems and Solutions for Undergraduate Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 386
Release :
ISBN-10 : 0387982353
ISBN-13 : 9780387982359
Rating : 4/5 (53 Downloads)

Synopsis Problems and Solutions for Undergraduate Analysis by : Rami Shakarchi

The present volume contains all the exercises and their solutions for Lang's second edition of Undergraduate Analysis. The wide variety of exercises, which range from computational to more conceptual and which are of vary ing difficulty, cover the following subjects and more: real numbers, limits, continuous functions, differentiation and elementary integration, normed vector spaces, compactness, series, integration in one variable, improper integrals, convolutions, Fourier series and the Fourier integral, functions in n-space, derivatives in vector spaces, the inverse and implicit mapping theorem, ordinary differential equations, multiple integrals, and differential forms. My objective is to offer those learning and teaching analysis at the undergraduate level a large number of completed exercises and I hope that this book, which contains over 600 exercises covering the topics mentioned above, will achieve my goal. The exercises are an integral part of Lang's book and I encourage the reader to work through all of them. In some cases, the problems in the beginning chapters are used in later ones, for example, in Chapter IV when one constructs-bump functions, which are used to smooth out singulari ties, and prove that the space of functions is dense in the space of regu lated maps. The numbering of the problems is as follows. Exercise IX. 5. 7 indicates Exercise 7, §5, of Chapter IX. Acknowledgments I am grateful to Serge Lang for his help and enthusiasm in this project, as well as for teaching me mathematics (and much more) with so much generosity and patience.

Understanding Analysis

Understanding Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 269
Release :
ISBN-10 : 9780387215068
ISBN-13 : 0387215069
Rating : 4/5 (68 Downloads)

Synopsis Understanding Analysis by : Stephen Abbott

This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.

Mathematical Analysis

Mathematical Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 348
Release :
ISBN-10 : 9781461207153
ISBN-13 : 1461207150
Rating : 4/5 (53 Downloads)

Synopsis Mathematical Analysis by : Andrew Browder

Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

Real Analysis via Sequences and Series

Real Analysis via Sequences and Series
Author :
Publisher : Springer
Total Pages : 483
Release :
ISBN-10 : 9781493926510
ISBN-13 : 1493926519
Rating : 4/5 (10 Downloads)

Synopsis Real Analysis via Sequences and Series by : Charles H.C. Little

This text gives a rigorous treatment of the foundations of calculus. In contrast to more traditional approaches, infinite sequences and series are placed at the forefront. The approach taken has not only the merit of simplicity, but students are well placed to understand and appreciate more sophisticated concepts in advanced mathematics. The authors mitigate potential difficulties in mastering the material by motivating definitions, results and proofs. Simple examples are provided to illustrate new material and exercises are included at the end of most sections. Noteworthy topics include: an extensive discussion of convergence tests for infinite series, Wallis’s formula and Stirling’s formula, proofs of the irrationality of π and e and a treatment of Newton’s method as a special instance of finding fixed points of iterated functions.

Beginning Functional Analysis

Beginning Functional Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 209
Release :
ISBN-10 : 9781475736878
ISBN-13 : 1475736878
Rating : 4/5 (78 Downloads)

Synopsis Beginning Functional Analysis by : Karen Saxe

The unifying approach of functional analysis is to view functions as points in abstract vector space and the differential and integral operators as linear transformations on these spaces. The author's goal is to present the basics of functional analysis in a way that makes them comprehensible to a student who has completed courses in linear algebra and real analysis, and to develop the topics in their historical contexts.

A First Course in Real Analysis

A First Course in Real Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 249
Release :
ISBN-10 : 9781441985484
ISBN-13 : 1441985484
Rating : 4/5 (84 Downloads)

Synopsis A First Course in Real Analysis by : Sterling K. Berberian

Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.

Real Analysis for the Undergraduate

Real Analysis for the Undergraduate
Author :
Publisher : Springer Science & Business Media
Total Pages : 423
Release :
ISBN-10 : 9781461496380
ISBN-13 : 1461496381
Rating : 4/5 (80 Downloads)

Synopsis Real Analysis for the Undergraduate by : Matthew A. Pons

This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author’s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.

Analysis by Its History

Analysis by Its History
Author :
Publisher : Springer Science & Business Media
Total Pages : 390
Release :
ISBN-10 : 9780387770369
ISBN-13 : 0387770364
Rating : 4/5 (69 Downloads)

Synopsis Analysis by Its History by : Ernst Hairer

This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.

Intermediate Real Analysis

Intermediate Real Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 783
Release :
ISBN-10 : 9781461394815
ISBN-13 : 1461394813
Rating : 4/5 (15 Downloads)

Synopsis Intermediate Real Analysis by : E. Fischer

There are a great deal of books on introductory analysis in print today, many written by mathematicians of the first rank. The publication of another such book therefore warrants a defense. I have taught analysis for many years and have used a variety of texts during this time. These books were of excellent quality mathematically but did not satisfy the needs of the students I was teaching. They were written for mathematicians but not for those who were first aspiring to attain that status. The desire to fill this gap gave rise to the writing of this book. This book is intended to serve as a text for an introductory course in analysis. Its readers will most likely be mathematics, science, or engineering majors undertaking the last quarter of their undergraduate education. The aim of a first course in analysis is to provide the student with a sound foundation for analysis, to familiarize him with the kind of careful thinking used in advanced mathematics, and to provide him with tools for further work in it. The typical student we are dealing with has completed a three-semester calculus course and possibly an introductory course in differential equations. He may even have been exposed to a semester or two of modern algebra. All this time his training has most likely been intuitive with heuristics taking the place of proof. This may have been appropriate for that stage of his development.