Two-Scale Stochastic Systems

Two-Scale Stochastic Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 274
Release :
ISBN-10 : 9783662132425
ISBN-13 : 3662132427
Rating : 4/5 (25 Downloads)

Synopsis Two-Scale Stochastic Systems by : Yuri Kabanov

Two-scale systems described by singularly perturbed SDEs have been the subject of ample literature. However, this new monograph develops subjects that were rarely addressed and could be given the collective description "Stochastic Tikhonov-Levinson theory and its applications." The book provides a mathematical apparatus designed to analyze the dynamic behaviour of a randomly perturbed system with fast and slow variables. In contrast to the deterministic Tikhonov-Levinson theory, the basic model is described in a more realistic way by stochastic differential equations. This leads to a number of new theoretical questions but simultaneously allows us to treat in a unified way a surprisingly wide spectrum of applications like fast modulations, approximate filtering, and stochastic approximation.Two-scale systems described by singularly perturbed SDEs have been the subject of ample literature. However, this new monograph develops subjects that were rarely addressed and could be given the collective description "Stochastic Tikhonov-Levinson theory and its applications." The book provides a mathematical apparatus designed to analyze the dynamic behaviour of a randomly perturbed system with fast and slow variables. In contrast to the deterministic Tikhonov-Levinson theory, the basic model is described in a more realistic way by stochastic differential equations. This leads to a number of new theoretical questions but simultaneously allows us to treat in a unified way a surprisingly wide spectrum of applications like fast modulations, approximate filtering, and stochastic approximation.

Complex Stochastic Systems

Complex Stochastic Systems
Author :
Publisher : CRC Press
Total Pages : 306
Release :
ISBN-10 : 1420035983
ISBN-13 : 9781420035988
Rating : 4/5 (83 Downloads)

Synopsis Complex Stochastic Systems by : O.E. Barndorff-Nielsen

Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference from Graphical Models by Steffen L. Lauritzen explores causal concepts in connection with modelling complex stochastic systems, with focus on the effect of interventions in a given system. State Space and Hidden Markov Models by Hans R. Künschshows the variety of applications of this concept to time series in engineering, biology, finance, and geophysics. Monte Carlo Methods on Genetic Structures by Elizabeth A. Thompson investigates special complex systems and gives a concise introduction to the relevant biological methodology. Renormalization of Interacting Diffusions by Frank den Hollander presents recent results on the large space-time behavior of infinite systems of interacting diffusions. Stein's Method for Epidemic Processes by Gesine Reinert investigates the mean field behavior of a general stochastic epidemic with explicit bounds. Individually, these articles provide authoritative, tutorial-style exposition and recent results from various subjects related to complex stochastic systems. Collectively, they link these separate areas of study to form the first comprehensive overview of this rapidly developing field.

Stochastic Systems in Merging Phase Space

Stochastic Systems in Merging Phase Space
Author :
Publisher : World Scientific
Total Pages : 348
Release :
ISBN-10 : 9789812565914
ISBN-13 : 9812565914
Rating : 4/5 (14 Downloads)

Synopsis Stochastic Systems in Merging Phase Space by : Vladimir Semenovich Koroli?uk

This book provides recent results on the stochastic approximation of systems by weak convergence techniques. General and particular schemes of proofs for average, diffusion, and Poisson approximations of stochastic systems are presented, allowing one to simplify complex systems and obtain numerically tractable models.The systems discussed in the book include stochastic additive functionals, dynamical systems, stochastic integral functionals, increment processes and impulsive processes. All these systems are switched by Markov and semi-Markov processes whose phase space is considered in asymptotic split and merging schemes. Most of the results from semi-Markov processes are new and presented for the first time in this book.

Discrete-Time Markov Chains

Discrete-Time Markov Chains
Author :
Publisher : Springer Science & Business Media
Total Pages : 372
Release :
ISBN-10 : 038721948X
ISBN-13 : 9780387219486
Rating : 4/5 (8X Downloads)

Synopsis Discrete-Time Markov Chains by : George Yin

Focusing on discrete-time-scale Markov chains, the contents of this book are an outgrowth of some of the authors' recent research. The motivation stems from existing and emerging applications in optimization and control of complex hybrid Markovian systems in manufacturing, wireless communication, and financial engineering. Much effort in this book is devoted to designing system models arising from these applications, analyzing them via analytic and probabilistic techniques, and developing feasible computational algorithms so as to reduce the inherent complexity. This book presents results including asymptotic expansions of probability vectors, structural properties of occupation measures, exponential bounds, aggregation and decomposition and associated limit processes, and interface of discrete-time and continuous-time systems. One of the salient features is that it contains a diverse range of applications on filtering, estimation, control, optimization, and Markov decision processes, and financial engineering. This book will be an important reference for researchers in the areas of applied probability, control theory, operations research, as well as for practitioners who use optimization techniques. Part of the book can also be used in a graduate course of applied probability, stochastic processes, and applications.

Control and System Theory of Discrete-Time Stochastic Systems

Control and System Theory of Discrete-Time Stochastic Systems
Author :
Publisher : Springer Nature
Total Pages : 940
Release :
ISBN-10 : 9783030669522
ISBN-13 : 3030669521
Rating : 4/5 (22 Downloads)

Synopsis Control and System Theory of Discrete-Time Stochastic Systems by : Jan H. van Schuppen

This book helps students, researchers, and practicing engineers to understand the theoretical framework of control and system theory for discrete-time stochastic systems so that they can then apply its principles to their own stochastic control systems and to the solution of control, filtering, and realization problems for such systems. Applications of the theory in the book include the control of ships, shock absorbers, traffic and communications networks, and power systems with fluctuating power flows. The focus of the book is a stochastic control system defined for a spectrum of probability distributions including Bernoulli, finite, Poisson, beta, gamma, and Gaussian distributions. The concepts of observability and controllability of a stochastic control system are defined and characterized. Each output process considered is, with respect to conditions, represented by a stochastic system called a stochastic realization. The existence of a control law is related to stochastic controllability while the existence of a filter system is related to stochastic observability. Stochastic control with partial observations is based on the existence of a stochastic realization of the filtration of the observed process.​

Multiple Time Scale Dynamics

Multiple Time Scale Dynamics
Author :
Publisher : Springer
Total Pages : 816
Release :
ISBN-10 : 9783319123165
ISBN-13 : 3319123165
Rating : 4/5 (65 Downloads)

Synopsis Multiple Time Scale Dynamics by : Christian Kuehn

This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.

From Stochastic Calculus to Mathematical Finance

From Stochastic Calculus to Mathematical Finance
Author :
Publisher : Springer Science & Business Media
Total Pages : 659
Release :
ISBN-10 : 9783540307884
ISBN-13 : 3540307885
Rating : 4/5 (84 Downloads)

Synopsis From Stochastic Calculus to Mathematical Finance by : Yu. Kabanov

Dedicated to the Russian mathematician Albert Shiryaev on his 70th birthday, this is a collection of papers written by his former students, co-authors and colleagues. The book represents the modern state of art of a quickly maturing theory and will be an essential source and reading for researchers in this area. Diversity of topics and comprehensive style of the papers make the book attractive for PhD students and young researchers.

Stochastic Portfolio Theory

Stochastic Portfolio Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 190
Release :
ISBN-10 : 9781475736991
ISBN-13 : 1475736991
Rating : 4/5 (91 Downloads)

Synopsis Stochastic Portfolio Theory by : E. Robert Fernholz

Stochastic portfolio theory is a mathematical methodology for constructing stock portfolios and for analyzing the effects induced on the behavior of these portfolios by changes in the distribution of capital in the market. Stochastic portfolio theory has both theoretical and practical applications: as a theoretical tool it can be used to construct examples of theoretical portfolios with specified characteristics and to determine the distributional component of portfolio return. This book is an introduction to stochastic portfolio theory for investment professionals and for students of mathematical finance. Each chapter includes a number of problems of varying levels of difficulty and a brief summary of the principal results of the chapter, without proofs.

Stochastic Integration and Differential Equations

Stochastic Integration and Differential Equations
Author :
Publisher : Springer
Total Pages : 430
Release :
ISBN-10 : 9783662100615
ISBN-13 : 3662100614
Rating : 4/5 (15 Downloads)

Synopsis Stochastic Integration and Differential Equations by : Philip Protter

It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.

Stochastic Simulation: Algorithms and Analysis

Stochastic Simulation: Algorithms and Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 490
Release :
ISBN-10 : 9780387690339
ISBN-13 : 0387690336
Rating : 4/5 (39 Downloads)

Synopsis Stochastic Simulation: Algorithms and Analysis by : Søren Asmussen

Sampling-based computational methods have become a fundamental part of the numerical toolset of practitioners and researchers across an enormous number of different applied domains and academic disciplines. This book provides a broad treatment of such sampling-based methods, as well as accompanying mathematical analysis of the convergence properties of the methods discussed. The reach of the ideas is illustrated by discussing a wide range of applications and the models that have found wide usage. The first half of the book focuses on general methods; the second half discusses model-specific algorithms. Exercises and illustrations are included.