Twisted Tensor Products Related to the Cohomology of the Classifying Spaces of Loop Groups

Twisted Tensor Products Related to the Cohomology of the Classifying Spaces of Loop Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 98
Release :
ISBN-10 : 9780821838563
ISBN-13 : 0821838563
Rating : 4/5 (63 Downloads)

Synopsis Twisted Tensor Products Related to the Cohomology of the Classifying Spaces of Loop Groups by : Katsuhiko Kuribayashi

Let $G$ be a compact, simply connected, simple Lie group. By applying the notion of a twisted tensor product in the senses of Brown as well as of Hess, we construct an economical injective resolution to compute, as an algebra, the cotorsion product which is the $E_2$-term of the cobar type Eilenberg-Moore spectral sequence converging to the cohomology of classifying space of the loop group $LG$. As an application, the cohomology $H^*(BLSpin(10); \mathbb{Z}/2)$ is explicitly determined as an $H^*(BSpin(10); \mathbb{Z}/2)$-module by using effectively the cobar type spectral sequence and the Hochschild spectral sequence, and further, by analyzing the TV-model for $BSpin(10)$.

Twisted Tensor Products Related to the Cohomology of the Classifying Spaces of Loop Groups

Twisted Tensor Products Related to the Cohomology of the Classifying Spaces of Loop Groups
Author :
Publisher : American Mathematical Society(RI)
Total Pages : 85
Release :
ISBN-10 : 1470404532
ISBN-13 : 9781470404536
Rating : 4/5 (32 Downloads)

Synopsis Twisted Tensor Products Related to the Cohomology of the Classifying Spaces of Loop Groups by : Katsuhiko Kuribayashi

Introduction The mod 2 cohomology of $BLSO(n)$ The mod 2 cohomology of $BLG$ for $G=Spin(n)\ (7\leq n\leq 9)$ The mod 2 cohomology of $BLG$ for $G=G_2,F_4$ A multiplication on a twisted tensor product The twisted tensor product associated with $H^*(Spin(N);\mathbb{Z}/2)$ A manner for calculating the homology of a DGA The Hochschild spectral sequence Proof of Theorem 1.6 Computation of a cotorsion product of $H^*(Spin(10);\mathbb{Z}/2)$ and the Hochschild homology of $H^*(BSpin(10);\mathbb{Z}/2)$ Proof of Theorem 1.7 Proofs of Proposition 1.9 and Theorem 1.10 Appendix Bibliography

Equivalences of Classifying Spaces Completed at the Prime Two

Equivalences of Classifying Spaces Completed at the Prime Two
Author :
Publisher : American Mathematical Soc.
Total Pages : 116
Release :
ISBN-10 : 9780821838280
ISBN-13 : 0821838288
Rating : 4/5 (80 Downloads)

Synopsis Equivalences of Classifying Spaces Completed at the Prime Two by : Robert Oliver

We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $\mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.

Steenrod Squares in Spectral Sequences

Steenrod Squares in Spectral Sequences
Author :
Publisher : American Mathematical Soc.
Total Pages : 170
Release :
ISBN-10 : 9780821841419
ISBN-13 : 0821841416
Rating : 4/5 (19 Downloads)

Synopsis Steenrod Squares in Spectral Sequences by : William M. Singer

This book develops a general theory of Steenrod operations in spectral sequences. It gives special attention to the change-of-rings spectral sequence for the cohomology of an extension of Hopf algebras and to the Eilenberg-Moore spectral sequence for the cohomology of classifying spaces and homotopy orbit spaces. In treating the change-of-rings spectral sequence, the book develops from scratch the necessary properties of extensions of Hopf algebras and constructs the spectral sequence in a form particularly suited to the introduction of Steenrod squares. The resulting theory can be used effectively for the computation of the cohomology rings of groups and Hopf algebras, and of the Steenrod algebra in particular, and so should play a useful role in stable homotopy theory. Similarly the book offers a self-contained construction of the Eilenberg-Moore spectral sequence, in a form suitable for the introduction of Steenrod operations. The corresponding theory is an effective tool for the computation of t

Operator Valued Hardy Spaces

Operator Valued Hardy Spaces
Author :
Publisher : American Mathematical Soc.
Total Pages : 78
Release :
ISBN-10 : 9780821839805
ISBN-13 : 0821839802
Rating : 4/5 (05 Downloads)

Synopsis Operator Valued Hardy Spaces by : Tao Mei

The author gives a systematic study of the Hardy spaces of functions with values in the noncommutative $Lp$-spaces associated with a semifinite von Neumann algebra $\mathcal{M .$ This is motivated by matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), as well as by the recent development of noncommutative martingale inequalities. in this paper noncommutative Hardy spaces are defined by noncommutative Lusin integral function, and it isproved that they are equivalent to those defined by noncommutative Littlewood-Paley G-functions. The main results of this paper include: (i) The analogue in the author's setting of the classical Fefferman duality theorem between $\mathcal{H 1$ and $\mathrm{BMO $. (ii) The atomic decomposition of theauthor's noncommutative $\mathcal{H 1.$ (iii) The equivalence between the norms of the noncommutative Hardy spaces and of the noncommutative $Lp$-spaces $(1

Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles

Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles
Author :
Publisher : American Mathematical Soc.
Total Pages : 96
Release :
ISBN-10 : 9780821839720
ISBN-13 : 0821839721
Rating : 4/5 (20 Downloads)

Synopsis Betti Numbers of the Moduli Space of Rank 3 Parabolic Higgs Bundles by : Oscar García-Prada

Parabolic Higgs bundles on a Riemann surface are of interest for many reasons, one of them being their importance in the study of representations of the fundamental group of the punctured surface in the complex general linear group. in this paper the authors calculate the Betti numbers of the moduli space of rank 3 parabolic Higgs bundles with fixed and non-fixed determinant, using Morse theory. A key point is that certain critical submanifolds of the Morse function can be identified with moduli spaces of parabolic triples. These moduli spaces come in families depending on a real parameter and the authors carry out a careful analysis of them by studying their variation with this parameter. Thus the authors obtain in particular information about the topology of the moduli spaces of parabolic triples for the value of the parameter relevant to the study of parabolic Higgs bundles. The remaining critical submanifolds are also described: one of them is the moduli space of parabolic bundles, while the rem

An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation

An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation
Author :
Publisher : American Mathematical Soc.
Total Pages : 112
Release :
ISBN-10 : 9780821839836
ISBN-13 : 0821839837
Rating : 4/5 (36 Downloads)

Synopsis An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation by : Lars Inge Hedberg

The authors define axiomatically a large class of function (or distribution) spaces on $N$-dimensional Euclidean space. The crucial property postulated is the validity of a vector-valued maximal inequality of Fefferman-Stein type. The scales of Besov spaces ($B$-spaces) and Lizorkin-Triebel spaces ($F$-spaces), and as a consequence also Sobolev spaces, and Bessel potential spaces, are included as special cases. The main results of Chapter 1 characterize our spaces by means of local approximations, higher differences, and atomic representations. In Chapters 2 and 3 these results are applied to prove pointwise differentiability outside exceptional sets of zero capacity, an approximation property known as spectral synthesis, a generalization of Whitney's ideal theorem, and approximation theorems of Luzin (Lusin) type.

On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates

On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates
Author :
Publisher : American Mathematical Soc.
Total Pages : 102
Release :
ISBN-10 : 9780821839416
ISBN-13 : 0821839411
Rating : 4/5 (16 Downloads)

Synopsis On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates by : Pascal Auscher

This memoir focuses on $Lp$ estimates for objects associated to elliptic operators in divergence form: its semigroup, the gradient of the semigroup, functional calculus, square functions and Riesz transforms. The author introduces four critical numbers associated to the semigroup and its gradient that completely rule the ranges of exponents for the $Lp$ estimates. It appears that the case $p2$ which is new. The author thus recovers in a unified and coherent way many $Lp$ estimates and gives further applications. The key tools from harmonic analysis are two criteria for $Lp$ boundedness, one for $p2$ but in ranges different from the usual intervals $(1,2)$ and $(2,\infty)$.

Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points

Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points
Author :
Publisher : American Mathematical Soc.
Total Pages : 142
Release :
ISBN-10 : 9780821839928
ISBN-13 : 0821839926
Rating : 4/5 (28 Downloads)

Synopsis Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points by : Robert M. Guralnick

Considers indecomposable degree $n$ covers of Riemann surfaces with monodromy group an alternating or symmetric group of degree $d$. The authors show that if the cover has five or more branch points then the genus grows rapidly with $n$ unless either $d = n$ or the curves have genus zero, there are precisely five branch points and $n =d(d-1)/2$.

The Structure of the Rational Concordance Group of Knots

The Structure of the Rational Concordance Group of Knots
Author :
Publisher : American Mathematical Soc.
Total Pages : 114
Release :
ISBN-10 : 9780821839935
ISBN-13 : 0821839934
Rating : 4/5 (35 Downloads)

Synopsis The Structure of the Rational Concordance Group of Knots by : Jae Choon Cha

The author studies the group of rational concordance classes of codimension two knots in rational homology spheres. He gives a full calculation of its algebraic theory by developing a complete set of new invariants. For computation, he relates these invariants with limiting behaviour of the Artin reciprocity over an infinite tower of number fields and analyzes it using tools from algebraic number theory. In higher dimensions it classifies the rational concordance group of knots whose ambient space satisfies a certain cobordism theoretic condition. In particular, he constructs infinitely many torsion elements. He shows that the structure of the rational concordance group is much more complicated than the integral concordance group from a topological viewpoint. He also investigates the structure peculiar to knots in rational homology 3-spheres. To obtain further nontrivial obstructions in this dimension, he develops a technique of controlling a certain limit of the von Neumann $L 2$-signature invariants.