Treading On Python Volume 2
Download Treading On Python Volume 2 full books in PDF, epub, and Kindle. Read online free Treading On Python Volume 2 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Matt Harrison |
Publisher |
: Matt Harrison |
Total Pages |
: 162 |
Release |
: 2013-06-23 |
ISBN-10 |
: 9781490550954 |
ISBN-13 |
: 149055095X |
Rating |
: 4/5 (54 Downloads) |
Synopsis Treading on Python Volume 2 by : Matt Harrison
Do you want to take your Python to the next level? Python is easy to learn. You can learn the basics in a day and be productive with it. But there are more advanced constructs that you will eventually run across if you spend enough time with it. Don't be confused by these. Learn them, embrace them, and improve your code and others.
Author |
: Matt Harrison |
Publisher |
: Matt Harrison |
Total Pages |
: 170 |
Release |
: 2012-05-23 |
ISBN-10 |
: 9781475266412 |
ISBN-13 |
: 1475266413 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Treading on Python Volume 1 by : Matt Harrison
Treading on Python is designed to bring developers and others who are anxious to learn Python up to speed quickly. Not only does it teach the basics of syntax, but it condenses years of experience. You will learn warts, gotchas, best practices and hints that have been gleaned through the years in days. You will hit the ground running and running in the right way.
Author |
: Matt Harrison |
Publisher |
: Createspace Independent Publishing Platform |
Total Pages |
: 256 |
Release |
: 2017-11-03 |
ISBN-10 |
: 1977921752 |
ISBN-13 |
: 9781977921758 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Illustrated Guide to Python 3 by : Matt Harrison
Introducing Your Guide to Learning PythonIllustrated Guide to Learning Python is designed to bring developers and others who are anxious to learn Python up to speed quickly. Not only does it teach the basics of syntax, but it condenses years of experience. You will learn warts, gotchas, best practices and hints that have been gleaned through the years in days. You will hit the ground running and running in the right way.Learn Python QuicklyPython is an incredible language. It is powerful and applicable in many areas. It is used for automation of simple or complex tasks, numerical processing, web development, interactive games and more. Whether you are a programmer coming to Python from another language, managing Python programmers or wanting to learn to program, it makes sense to cut to the chase and learn Python the right way. You could scour blogs, websites and much longer tomes if you have time. Treading on Python lets you learn the hints and tips to be Pythonic quickly.Packed with Useful Hints and TipsYou'll learn the best practices without wasting time searching or trying to force Python to be like other languages. I've collected all the gems I've gleaned over years of writing and teaching Python for you.A No Nonsense Guide to Mastering Basic PythonPython is a programming language that lets you work more quickly and integrate your systems more effectively. You can learn to use Python and see almost immediate gains in productivity and lower maintenance costs.What you will learn: Distilled best practices and tips How interpreted languages work Using basic types such as Strings, Integers, and Floats Best practices for using the interpreter during development The difference between mutable and immutable data Sets, Lists, and Dictionaries, and when to use each Gathering keyboard input How to define a class Looping constructs Handling Exceptions in code Slicing sequences Creating modular code Using libraries Laying out code Community prescribed conventions
Author |
: Matt Harrison |
Publisher |
: Createspace Independent Publishing Platform |
Total Pages |
: 0 |
Release |
: 2016-06 |
ISBN-10 |
: 153359824X |
ISBN-13 |
: 9781533598240 |
Rating |
: 4/5 (4X Downloads) |
Synopsis Learning the Pandas Library by : Matt Harrison
Python is one of the top 3 tools that Data Scientists use. One of the tools in their arsenal is the Pandas library. This tool is popular because it gives you so much functionality out of the box. In addition, you can use all the power of Python to make the hard stuff easy! Learning the Pandas Library is designed to bring developers and aspiring data scientists who are anxious to learn Pandas up to speed quickly. It starts with the fundamentals of the data structures. Then, it covers the essential functionality. It includes many examples, graphics, code samples, and plots from real world examples. The Content Covers: Installation Data Structures Series CRUD Series Indexing Series Methods Series Plotting Series Examples DataFrame Methods DataFrame Statistics Grouping, Pivoting, and Reshaping Dealing with Missing Data Joining DataFrames DataFrame Examples Preliminary Reviews This is an excellent introduction benefitting from clear writing and simple examples. The pandas documentation itself is large and sometimes assumes too much knowledge, in my opinion. Learning the Pandas Library bridges this gap for new users and even for those with some pandas experience such as me. -Garry C. I have finished reading Learning the Pandas Library and I liked it... very useful and helpful tips even for people who use pandas regularly. -Tom Z.
Author |
: Zed A. Shaw |
Publisher |
: Addison-Wesley Professional |
Total Pages |
: 752 |
Release |
: 2017-06-26 |
ISBN-10 |
: 9780134693903 |
ISBN-13 |
: 0134693906 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Learn Python 3 the Hard Way by : Zed A. Shaw
You Will Learn Python 3! Zed Shaw has perfected the world’s best system for learning Python 3. Follow it and you will succeed—just like the millions of beginners Zed has taught to date! You bring the discipline, commitment, and persistence; the author supplies everything else. In Learn Python 3 the Hard Way, you’ll learn Python by working through 52 brilliantly crafted exercises. Read them. Type their code precisely. (No copying and pasting!) Fix your mistakes. Watch the programs run. As you do, you’ll learn how a computer works; what good programs look like; and how to read, write, and think about code. Zed then teaches you even more in 5+ hours of video where he shows you how to break, fix, and debug your code—live, as he’s doing the exercises. Install a complete Python environment Organize and write code Fix and break code Basic mathematics Variables Strings and text Interact with users Work with files Looping and logic Data structures using lists and dictionaries Program design Object-oriented programming Inheritance and composition Modules, classes, and objects Python packaging Automated testing Basic game development Basic web development It’ll be hard at first. But soon, you’ll just get it—and that will feel great! This course will reward you for every minute you put into it. Soon, you’ll know one of the world’s most powerful, popular programming languages. You’ll be a Python programmer. This Book Is Perfect For Total beginners with zero programming experience Junior developers who know one or two languages Returning professionals who haven’t written code in years Seasoned professionals looking for a fast, simple, crash course in Python 3
Author |
: Stefan Jansen |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 822 |
Release |
: 2020-07-31 |
ISBN-10 |
: 9781839216787 |
ISBN-13 |
: 1839216786 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen
Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
Author |
: Yves Hilpisch |
Publisher |
: O'Reilly Media |
Total Pages |
: 380 |
Release |
: 2020-11-12 |
ISBN-10 |
: 9781492053323 |
ISBN-13 |
: 1492053325 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Python for Algorithmic Trading by : Yves Hilpisch
Algorithmic trading, once the exclusive domain of institutional players, is now open to small organizations and individual traders using online platforms. The tool of choice for many traders today is Python and its ecosystem of powerful packages. In this practical book, author Yves Hilpisch shows students, academics, and practitioners how to use Python in the fascinating field of algorithmic trading. You'll learn several ways to apply Python to different aspects of algorithmic trading, such as backtesting trading strategies and interacting with online trading platforms. Some of the biggest buy- and sell-side institutions make heavy use of Python. By exploring options for systematically building and deploying automated algorithmic trading strategies, this book will help you level the playing field. Set up a proper Python environment for algorithmic trading Learn how to retrieve financial data from public and proprietary data sources Explore vectorization for financial analytics with NumPy and pandas Master vectorized backtesting of different algorithmic trading strategies Generate market predictions by using machine learning and deep learning Tackle real-time processing of streaming data with socket programming tools Implement automated algorithmic trading strategies with the OANDA and FXCM trading platforms
Author |
: David Kopec |
Publisher |
: Simon and Schuster |
Total Pages |
: 262 |
Release |
: 2020-12-21 |
ISBN-10 |
: 9781638356547 |
ISBN-13 |
: 1638356548 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Classic Computer Science Problems in Java by : David Kopec
Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. Summary Sharpen your coding skills by exploring established computer science problems! Classic Computer Science Problems in Java challenges you with time-tested scenarios and algorithms. You’ll work through a series of exercises based in computer science fundamentals that are designed to improve your software development abilities, improve your understanding of artificial intelligence, and even prepare you to ace an interview. As you work through examples in search, clustering, graphs, and more, you'll remember important things you've forgotten and discover classic solutions to your "new" problems! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Whatever software development problem you’re facing, odds are someone has already uncovered a solution. This book collects the most useful solutions devised, guiding you through a variety of challenges and tried-and-true problem-solving techniques. The principles and algorithms presented here are guaranteed to save you countless hours in project after project. About the book Classic Computer Science Problems in Java is a master class in computer programming designed around 55 exercises that have been used in computer science classrooms for years. You’ll work through hands-on examples as you explore core algorithms, constraint problems, AI applications, and much more. What's inside Recursion, memoization, and bit manipulation Search, graph, and genetic algorithms Constraint-satisfaction problems K-means clustering, neural networks, and adversarial search About the reader For intermediate Java programmers. About the author David Kopec is an assistant professor of Computer Science and Innovation at Champlain College in Burlington, Vermont. Table of Contents 1 Small problems 2 Search problems 3 Constraint-satisfaction problems 4 Graph problems 5 Genetic algorithms 6 K-means clustering 7 Fairly simple neural networks 8 Adversarial search 9 Miscellaneous problems 10 Interview with Brian Goetz
Author |
: Ryan Mitchell |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 264 |
Release |
: 2015-06-15 |
ISBN-10 |
: 9781491910252 |
ISBN-13 |
: 1491910259 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Web Scraping with Python by : Ryan Mitchell
Learn web scraping and crawling techniques to access unlimited data from any web source in any format. With this practical guide, you’ll learn how to use Python scripts and web APIs to gather and process data from thousands—or even millions—of web pages at once. Ideal for programmers, security professionals, and web administrators familiar with Python, this book not only teaches basic web scraping mechanics, but also delves into more advanced topics, such as analyzing raw data or using scrapers for frontend website testing. Code samples are available to help you understand the concepts in practice. Learn how to parse complicated HTML pages Traverse multiple pages and sites Get a general overview of APIs and how they work Learn several methods for storing the data you scrape Download, read, and extract data from documents Use tools and techniques to clean badly formatted data Read and write natural languages Crawl through forms and logins Understand how to scrape JavaScript Learn image processing and text recognition
Author |
: Daniel Y. Chen |
Publisher |
: Addison-Wesley Professional |
Total Pages |
: 1093 |
Release |
: 2017-12-15 |
ISBN-10 |
: 9780134547053 |
ISBN-13 |
: 0134547055 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Pandas for Everyone by : Daniel Y. Chen
The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning