Topology Of Foliations An Introduction
Download Topology Of Foliations An Introduction full books in PDF, epub, and Kindle. Read online free Topology Of Foliations An Introduction ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Ichirō Tamura |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 212 |
Release |
: 1992 |
ISBN-10 |
: 0821842005 |
ISBN-13 |
: 9780821842003 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Topology of Foliations: An Introduction by : Ichirō Tamura
This book provides historical background and a complete overview of the qualitative theory of foliations and differential dynamical systems. Senior mathematics majors and graduate students with background in multivariate calculus, algebraic and differential topology, differential geometry, and linear algebra will find this book an accessible introduction. Upon finishing the book, readers will be prepared to take up research in this area. Readers will appreciate the book for its highly visual presentation of examples in low dimensions. The author focuses particularly on foliations with compact leaves, covering all the important basic results. Specific topics covered include: dynamical systems on the torus and the three-sphere, local and global stability theorems for foliations, the existence of compact leaves on three-spheres, and foliated cobordisms on three-spheres. Also included is a short introduction to the theory of differentiable manifolds.
Author |
: Masayuki Asaoka |
Publisher |
: Springer |
Total Pages |
: 207 |
Release |
: 2014-10-07 |
ISBN-10 |
: 9783034808712 |
ISBN-13 |
: 3034808712 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Foliations: Dynamics, Geometry and Topology by : Masayuki Asaoka
This book is an introduction to several active research topics in Foliation Theory and its connections with other areas. It contains expository lectures showing the diversity of ideas and methods converging in the study of foliations. The lectures by Aziz El Kacimi Alaoui provide an introduction to Foliation Theory with emphasis on examples and transverse structures. Steven Hurder's lectures apply ideas from smooth dynamical systems to develop useful concepts in the study of foliations: limit sets and cycles for leaves, leafwise geodesic flow, transverse exponents, Pesin Theory and hyperbolic, parabolic and elliptic types of foliations. The lectures by Masayuki Asaoka compute the leafwise cohomology of foliations given by actions of Lie groups, and apply it to describe deformation of those actions. In his lectures, Ken Richardson studies the properties of transverse Dirac operators for Riemannian foliations and compact Lie group actions, and explains a recently proved index formula. Besides students and researchers of Foliation Theory, this book will be interesting for mathematicians interested in the applications to foliations of subjects like Topology of Manifolds, Differential Geometry, Dynamics, Cohomology or Global Analysis.
Author |
: César Camacho |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 204 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9781461252924 |
ISBN-13 |
: 146125292X |
Rating |
: 4/5 (24 Downloads) |
Synopsis Geometric Theory of Foliations by : César Camacho
Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X· curl X • 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu mulate asymptotically on the compact leaf. Further, the foliation is C"".
Author |
: Ieke Moerdijk |
Publisher |
: |
Total Pages |
: 173 |
Release |
: 2003 |
ISBN-10 |
: 0511071531 |
ISBN-13 |
: 9780511071539 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Introduction to Foliations and Lie Groupoids by : Ieke Moerdijk
This book gives a quick introduction to the theory of foliations and Lie groupoids. It is based on the authors' extensive teaching experience and contains numerous examples and exercises making it ideal either for independent study or as the basis of a graduate course.
Author |
: Danny Calegari |
Publisher |
: Oxford University Press on Demand |
Total Pages |
: 378 |
Release |
: 2007-05-17 |
ISBN-10 |
: 9780198570080 |
ISBN-13 |
: 0198570082 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Foliations and the Geometry of 3-Manifolds by : Danny Calegari
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Author |
: Adam Clay |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 167 |
Release |
: 2016-11-16 |
ISBN-10 |
: 9781470431068 |
ISBN-13 |
: 1470431068 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Ordered Groups and Topology by : Adam Clay
This book deals with the connections between topology and ordered groups. It begins with a self-contained introduction to orderable groups and from there explores the interactions between orderability and objects in low-dimensional topology, such as knot theory, braid groups, and 3-manifolds, as well as groups of homeomorphisms and other topological structures. The book also addresses recent applications of orderability in the studies of codimension-one foliations and Heegaard-Floer homology. The use of topological methods in proving algebraic results is another feature of the book. The book was written to serve both as a textbook for graduate students, containing many exercises, and as a reference for researchers in topology, algebra, and dynamical systems. A basic background in group theory and topology is the only prerequisite for the reader.
Author |
: John M. Lee |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 646 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9780387217529 |
ISBN-13 |
: 0387217525 |
Rating |
: 4/5 (29 Downloads) |
Synopsis Introduction to Smooth Manifolds by : John M. Lee
Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why
Author |
: Bruno Scardua |
Publisher |
: World Scientific |
Total Pages |
: 194 |
Release |
: 2017-02-16 |
ISBN-10 |
: 9789813207097 |
ISBN-13 |
: 9813207094 |
Rating |
: 4/5 (97 Downloads) |
Synopsis Geometry, Dynamics And Topology Of Foliations: A First Course by : Bruno Scardua
The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments.In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations.
Author |
: S.P. Novikov |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 326 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9783662105795 |
ISBN-13 |
: 3662105799 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Topology I by : S.P. Novikov
This up-to-date survey of the whole field of topology is the flagship of the topology subseries of the Encyclopaedia. The book gives an overview of various subfields, beginning with the elements and proceeding right up to the present frontiers of research.
Author |
: Molino |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 348 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781468486704 |
ISBN-13 |
: 1468486705 |
Rating |
: 4/5 (04 Downloads) |
Synopsis Riemannian Foliations by : Molino
Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a par tition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of di L..... -' _ mension q. -----~) W M Actually, this image corresponds to an elementary type of folia tion, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simpIe" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques.