Topology, $C^*$-Algebras, and String Duality

Topology, $C^*$-Algebras, and String Duality
Author :
Publisher : American Mathematical Soc.
Total Pages : 122
Release :
ISBN-10 : 9780821849224
ISBN-13 : 0821849220
Rating : 4/5 (24 Downloads)

Synopsis Topology, $C^*$-Algebras, and String Duality by : Jonathan R_osenberg

String theory is the leading candidate for a physical theory that combines all the fundamental forces of nature, as well as the principles of relativity and quantum mechanics, into a mathematically elegant whole. The mathematical tools used by string theorists are highly sophisticated, and cover many areas of mathematics. As with the birth of quantum theory in the early 20th century, the mathematics has benefited at least as much as the physics from the collaboration. In this book, based on CBMS lectures given at Texas Christian University, Rosenberg describes some of the most recent interplay between string dualities and topology and operator algebras. The book is an interdisciplinary approach to duality symmetries in string theory. It can be read by either mathematicians or theoretical physicists, and involves a more-or-less equal mixture of algebraic topology, operator algebras, and physics. There is also a bit of algebraic geometry, especially in the last chapter. The reader is assumed to be somewhat familiar with at least one of these four subjects, but not necessarily with all or even most of them. The main objective of the book is to show how several seemingly disparate subjects are closely linked with one another, and to give readers an overview of some areas of current research, even if this means that not everything is covered systematically.

Superstrings, Geometry, Topology, and $C^*$-algebras

Superstrings, Geometry, Topology, and $C^*$-algebras
Author :
Publisher : American Mathematical Soc.
Total Pages : 265
Release :
ISBN-10 : 9780821848876
ISBN-13 : 0821848879
Rating : 4/5 (76 Downloads)

Synopsis Superstrings, Geometry, Topology, and $C^*$-algebras by : Robert S. Doran

This volume contains the proceedings of an NSF-CBMS Conference held at Texas Christian University in Fort Worth, Texas, May 18-22, 2009. The papers, written especially for this volume by well-known mathematicians and mathematical physicists, are an outgrowth of the talks presented at the conference. Topics examined are highly interdisciplinary and include, among many other things, recent results on D-brane charges in $K$-homology and twisted $K$-homology, Yang-Mills gauge theory and connections with non-commutative geometry, Landau-Ginzburg models, $C^*$-algebraic non-commutative geometry and ties to quantum physics and topology, the rational homotopy type of the group of unitary elements in an Azumaya algebra, and functoriality properties in the theory of $C^*$-crossed products and fixed point algebras for proper actions. An introduction, written by Jonathan Rosenberg, provides an instructive overview describing common themes and how the various papers in the volume are interrelated and fit together. The rich diversity of papers appearing in the volume demonstrates the current interplay between superstring theory, geometry/topology, and non-commutative geometry. The book will be of interest to graduate students, mathematicians, mathematical physicists, and researchers working in these areas.

Noncommutative Geometry And Physics 3 - Proceedings Of The Noncommutative Geometry And Physics 2008, On K-theory And D-branes & Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry

Noncommutative Geometry And Physics 3 - Proceedings Of The Noncommutative Geometry And Physics 2008, On K-theory And D-branes & Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry
Author :
Publisher : World Scientific
Total Pages : 537
Release :
ISBN-10 : 9789814425025
ISBN-13 : 9814425028
Rating : 4/5 (25 Downloads)

Synopsis Noncommutative Geometry And Physics 3 - Proceedings Of The Noncommutative Geometry And Physics 2008, On K-theory And D-branes & Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry by : Giuseppe Dito

Noncommutative differential geometry is a novel approach to geometry, aimed in part at applications in physics. It was founded in the early eighties by the 1982 Fields Medalist Alain Connes on the basis of his fundamental works in operator algebras. It is now a very active branch of mathematics with actual and potential applications to a variety of domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field. It is an important topic both for mathematics and physics.

From the Basic Homotopy Lemma to the Classification of C*-algebras

From the Basic Homotopy Lemma to the Classification of C*-algebras
Author :
Publisher : American Mathematical Soc.
Total Pages : 249
Release :
ISBN-10 : 9781470434908
ISBN-13 : 1470434903
Rating : 4/5 (08 Downloads)

Synopsis From the Basic Homotopy Lemma to the Classification of C*-algebras by : Huaxin Lin

This book examines some recent developments in the theory of -algebras, which are algebras of operators on Hilbert spaces. An elementary introduction to the technical part of the theory is given via a basic homotopy lemma concerning a pair of almost commuting unitaries. The book presents an outline of the background as well as some recent results of the classification of simple amenable -algebras, otherwise known as the Elliott program. This includes some stable uniqueness theorems and a revisiting of Bott maps via stable homotopy. Furthermore, -theory related rotation maps are introduced. The book is based on lecture notes from the CBMS lecture sequence at the University of Wyoming in the summer of 2015.

Lectures on Field Theory and Topology

Lectures on Field Theory and Topology
Author :
Publisher : American Mathematical Soc.
Total Pages : 202
Release :
ISBN-10 : 9781470452063
ISBN-13 : 1470452065
Rating : 4/5 (63 Downloads)

Synopsis Lectures on Field Theory and Topology by : Daniel S. Freed

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.

Topological Quantum Computation

Topological Quantum Computation
Author :
Publisher : American Mathematical Soc.
Total Pages : 134
Release :
ISBN-10 : 9780821849309
ISBN-13 : 0821849301
Rating : 4/5 (09 Downloads)

Synopsis Topological Quantum Computation by : Zhenghan Wang

Topological quantum computation is a computational paradigm based on topological phases of matter, which are governed by topological quantum field theories. In this approach, information is stored in the lowest energy states of many-anyon systems and processed by braiding non-abelian anyons. The computational answer is accessed by bringing anyons together and observing the result. Besides its theoretical esthetic appeal, the practical merit of the topological approach lies in its error-minimizing hypothetical hardware: topological phases of matter are fault-avoiding or deaf to most local noises, and unitary gates are implemented with exponential accuracy. Experimental realizations are pursued in systems such as fractional quantum Hall liquids and topological insulators. This book expands on the author's CBMS lectures on knots and topological quantum computing and is intended as a primer for mathematically inclined graduate students. With an emphasis on introducing basic notions and current research, this book gives the first coherent account of the field, covering a wide range of topics: Temperley-Lieb-Jones theory, the quantum circuit model, ribbon fusion category theory, topological quantum field theory, anyon theory, additive approximation of the Jones polynomial, anyonic quantum computing models, and mathematical models of topological phases of matter.

Topics in Noncommutative Geometry

Topics in Noncommutative Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 289
Release :
ISBN-10 : 9780821868645
ISBN-13 : 0821868640
Rating : 4/5 (45 Downloads)

Synopsis Topics in Noncommutative Geometry by : Guillermo Cortiñas

Luis Santalo Winter Schools are organized yearly by the Mathematics Department and the Santalo Mathematical Research Institute of the School of Exact and Natural Sciences of the University of Buenos Aires (FCEN). This volume contains the proceedings of the third Luis Santalo Winter School which was devoted to noncommutative geometry and held at FCEN July 26-August 6, 2010. Topics in this volume concern noncommutative geometry in a broad sense, encompassing various mathematical and physical theories that incorporate geometric ideas to the study of noncommutative phenomena. It explores connections with several areas including algebra, analysis, geometry, topology and mathematical physics. Bursztyn and Waldmann discuss the classification of star products of Poisson structures up to Morita equivalence. Tsygan explains the connections between Kontsevich's formality theorem, noncommutative calculus, operads and index theory. Hoefel presents a concrete elementary construction in operad theory. Meyer introduces the subject of $\mathrm{C}^*$-algebraic crossed products. Rosenberg introduces Kasparov's $KK$-theory and noncommutative tori and includes a discussion of the Baum-Connes conjecture for $K$-theory of crossed products, among other topics. Lafont, Ortiz, and Sanchez-Garcia carry out a concrete computation in connection with the Baum-Connes conjecture. Zuk presents some remarkable groups produced by finite automata. Mesland discusses spectral triples and the Kasparov product in $KK$-theory. Trinchero explores the connections between Connes' noncommutative geometry and quantum field theory. Karoubi demonstrates a construction of twisted $K$-theory by means of twisted bundles. Tabuada surveys the theory of noncommutative motives.

Deformation Spaces

Deformation Spaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 174
Release :
ISBN-10 : 9783834896803
ISBN-13 : 3834896802
Rating : 4/5 (03 Downloads)

Synopsis Deformation Spaces by : Hossein Abbaspour

The first instances of deformation theory were given by Kodaira and Spencer for complex structures and by Gerstenhaber for associative algebras. Since then, deformation theory has been applied as a useful tool in the study of many other mathematical structures, and even today it plays an important role in many developments of modern mathematics. This volume collects a few self-contained and peer-reviewed papers by experts which present up-to-date research topics in algebraic and motivic topology, quantum field theory, algebraic geometry, noncommutative geometry and the deformation theory of Poisson algebras. They originate from activities at the Max-Planck-Institute for Mathematics and the Hausdorff Center for Mathematics in Bonn.

Deformation Theory of Algebras and Their Diagrams

Deformation Theory of Algebras and Their Diagrams
Author :
Publisher : American Mathematical Soc.
Total Pages : 143
Release :
ISBN-10 : 9780821889794
ISBN-13 : 0821889796
Rating : 4/5 (94 Downloads)

Synopsis Deformation Theory of Algebras and Their Diagrams by : Martin Markl

This book brings together both the classical and current aspects of deformation theory. The presentation is mostly self-contained, assuming only basic knowledge of commutative algebra, homological algebra and category theory. In the interest of readability, some technically complicated proofs have been omitted when a suitable reference was available. The relation between the uniform continuity of algebraic maps and topologized tensor products is explained in detail, however, as this subject does not seem to be commonly known and the literature is scarce. The exposition begins by recalling Gerstenhaber's classical theory for associative algebras. The focus then shifts to a homotopy-invariant setup of Maurer-Cartan moduli spaces. As an application, Kontsevich's approach to deformation quantization of Poisson manifolds is reviewed. Then, after a brief introduction to operads, a strongly homotopy Lie algebra governing deformations of (diagrams of) algebras of a given type is described, followed by examples and generalizations.