Topological Strings and Quantum Curves

Topological Strings and Quantum Curves
Author :
Publisher : Amsterdam University Press
Total Pages : 310
Release :
ISBN-10 : 9789085550204
ISBN-13 : 9085550203
Rating : 4/5 (04 Downloads)

Synopsis Topological Strings and Quantum Curves by : Lotte Hollands

This thesis presents several new insights on the interface between mathematics and theoretical physics, with a central role for Riemann surfaces. First of all, the duality between Vafa-Witten theory and WZW models is embedded in string theory. Secondly, this model is generalized to a web of dualities connecting topological string theory and N=2 supersymmetric gauge theories to a configuration of D-branes that intersect over a Riemann surface. This description yields a new perspective on topological string theory in terms of a KP integrable system based on a quantum curve. Thirdly, this thesis describes a geometric analysis of wall-crossing in N=4 string theory. And lastly, it offers a novel approach to constuct metastable vacua in type IIB string theory.

Homological Mirror Symmetry

Homological Mirror Symmetry
Author :
Publisher : Springer Science & Business Media
Total Pages : 281
Release :
ISBN-10 : 9783540680291
ISBN-13 : 3540680292
Rating : 4/5 (91 Downloads)

Synopsis Homological Mirror Symmetry by : Anton Kapustin

An ideal reference on the mathematical aspects of quantum field theory, this volume provides a set of lectures and reviews that both introduce and representatively review the state-of-the art in the field from different perspectives.

The Unity of Mathematics

The Unity of Mathematics
Author :
Publisher : Springer Science & Business Media
Total Pages : 646
Release :
ISBN-10 : 9780817644673
ISBN-13 : 0817644679
Rating : 4/5 (73 Downloads)

Synopsis The Unity of Mathematics by : Pavel Etingof

Tribute to the vision and legacy of Israel Moiseevich Gel'fand Written by leading mathematicians, these invited papers reflect the unity of mathematics as a whole, with particular emphasis on the many connections among the fields of geometry, physics, and representation theory Topics include conformal field theory, K-theory, noncommutative geometry, gauge theory, representations of infinite-dimensional Lie algebras, and various aspects of the Langlands program

Topological Recursion and its Influence in Analysis, Geometry, and Topology

Topological Recursion and its Influence in Analysis, Geometry, and Topology
Author :
Publisher : American Mathematical Soc.
Total Pages : 578
Release :
ISBN-10 : 9781470435417
ISBN-13 : 1470435411
Rating : 4/5 (17 Downloads)

Synopsis Topological Recursion and its Influence in Analysis, Geometry, and Topology by : Chiu-Chu Melissa Liu

This volume contains the proceedings of the 2016 AMS von Neumann Symposium on Topological Recursion and its Influence in Analysis, Geometry, and Topology, which was held from July 4–8, 2016, at the Hilton Charlotte University Place, Charlotte, North Carolina. The papers contained in the volume present a snapshot of rapid and rich developments in the emerging research field known as topological recursion. It has its origin around 2004 in random matrix theory and also in Mirzakhani's work on the volume of moduli spaces of hyperbolic surfaces. Topological recursion has played a fundamental role in connecting seemingly unrelated areas of mathematics such as matrix models, enumeration of Hurwitz numbers and Grothendieck's dessins d'enfants, Gromov-Witten invariants, the A-polynomials and colored polynomial invariants of knots, WKB analysis, and quantization of Hitchin moduli spaces. In addition to establishing these topics, the volume includes survey papers on the most recent key accomplishments: discovery of the unexpected relation to semi-simple cohomological field theories and a solution to the remodeling conjecture. It also provides a glimpse into the future research direction; for example, connections with the Airy structures, modular functors, Hurwitz-Frobenius manifolds, and ELSV-type formulas.

String-Math 2014

String-Math 2014
Author :
Publisher : American Mathematical Soc.
Total Pages : 418
Release :
ISBN-10 : 9781470419929
ISBN-13 : 1470419920
Rating : 4/5 (29 Downloads)

Synopsis String-Math 2014 by : Vincent Bouchard:

The conference String-Math 2014 was held from June 9–13, 2014, at the University of Alberta. This edition of String-Math is the first to include satellite workshops: “String-Math Summer School” (held from June 2–6, 2014, at the University of British Columbia), “Calabi-Yau Manifolds and their Moduli” (held from June 14–18, 2014, at the University of Alberta), and “Quantum Curves and Quantum Knot Invariants” (held from June 16–20, 2014, at the Banff International Research Station). This volume presents the proceedings of the conference and satellite workshops. For mathematics, string theory has been a source of many significant inspirations, ranging from Seiberg-Witten theory in four-manifolds, to enumerative geometry and Gromov-Witten theory in algebraic geometry, to work on the Jones polynomial in knot theory, to recent progress in the geometric Langlands program and the development of derived algebraic geometry and n-category theory. In the other direction, mathematics has provided physicists with powerful tools, ranging from powerful differential geometric techniques for solving or analyzing key partial differential equations, to toric geometry, to K-theory and derived categories in D-branes, to the analysis of Calabi-Yau manifolds and string compactifications, to modular forms and other arithmetic techniques. Articles in this book address many of these topics.

String-Math 2016

String-Math 2016
Author :
Publisher : American Mathematical Soc.
Total Pages : 314
Release :
ISBN-10 : 9781470435158
ISBN-13 : 1470435152
Rating : 4/5 (58 Downloads)

Synopsis String-Math 2016 by : Amir-Kian Kashani-Poor

This volume contains the proceedings of the conference String-Math 2016, which was held from June 27–July 2, 2016, at Collége de France, Paris, France. String-Math is an annual conference covering the most significant progress at the interface of string theory and mathematics. The two fields have had a very fruitful dialogue over the last thirty years, with string theory contributing key ideas which have opened entirely new areas of mathematics and modern mathematics providing powerful concepts and tools to deal with the intricacies of string and quantum field theory. The papers in this volume cover topics ranging from supersymmetric quantum field theories, topological strings, and conformal nets to moduli spaces of curves, representations, instantons, and harmonic maps, with applications to spectral theory and to the geometric Langlands program.

The Geometry, Topology And Physics Of Moduli Spaces Of Higgs Bundles

The Geometry, Topology And Physics Of Moduli Spaces Of Higgs Bundles
Author :
Publisher : World Scientific
Total Pages : 412
Release :
ISBN-10 : 9789813229105
ISBN-13 : 9813229101
Rating : 4/5 (05 Downloads)

Synopsis The Geometry, Topology And Physics Of Moduli Spaces Of Higgs Bundles by : Richard Wentworth

In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ngô Bau Châu's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.

Advanced Topics in Quantum Mechanics

Advanced Topics in Quantum Mechanics
Author :
Publisher : Cambridge University Press
Total Pages : 274
Release :
ISBN-10 : 9781108852852
ISBN-13 : 1108852858
Rating : 4/5 (52 Downloads)

Synopsis Advanced Topics in Quantum Mechanics by : Marcos Mariño

Quantum mechanics is one of the most successful theories in science, and is relevant to nearly all modern topics of scientific research. This textbook moves beyond the introductory and intermediate principles of quantum mechanics frequently covered in undergraduate and graduate courses, presenting in-depth coverage of many more exciting and advanced topics. The author provides a clearly structured text for advanced students, graduates and researchers looking to deepen their knowledge of theoretical quantum mechanics. The book opens with a brief introduction covering key concepts and mathematical tools, followed by a detailed description of the Wentzel–Kramers–Brillouin (WKB) method. Two alternative formulations of quantum mechanics are then presented: Wigner's phase space formulation and Feynman's path integral formulation. The text concludes with a chapter examining metastable states and resonances. Step-by-step derivations, worked examples and physical applications are included throughout.

Strings and Geometry

Strings and Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 396
Release :
ISBN-10 : 082183715X
ISBN-13 : 9780821837153
Rating : 4/5 (5X Downloads)

Synopsis Strings and Geometry by : Clay Mathematics Institute. Summer School

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.

Homological Mirror Symmetry and Tropical Geometry

Homological Mirror Symmetry and Tropical Geometry
Author :
Publisher : Springer
Total Pages : 445
Release :
ISBN-10 : 9783319065144
ISBN-13 : 3319065149
Rating : 4/5 (44 Downloads)

Synopsis Homological Mirror Symmetry and Tropical Geometry by : Ricardo Castano-Bernard

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.