Topics In The Theory Of Schrodinger Operators
Download Topics In The Theory Of Schrodinger Operators full books in PDF, epub, and Kindle. Read online free Topics In The Theory Of Schrodinger Operators ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Huzihiro Araki |
Publisher |
: World Scientific |
Total Pages |
: 296 |
Release |
: 2004 |
ISBN-10 |
: 9812562478 |
ISBN-13 |
: 9789812562470 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Topics in the Theory of Schrödinger Operators by : Huzihiro Araki
This invaluable book presents reviews of some recent topics in thetheory of SchrAdinger operators. It includes a short introduction tothe subject, a survey of the theory of the SchrAdinger equation whenthe potential depends on the time periodically, an introduction to theso-called FBI transformation (also known as coherent state expansion)with application to the semi-classical limit of the S-matrix, anoverview of inverse spectral and scattering problems, and a study ofthe ground state of the PauliOCoFierz model with the use of thefunctional integral. The material is accessible to graduate studentsand non-expert researchers."
Author |
: Huzihiro Araki |
Publisher |
: World Scientific |
Total Pages |
: 288 |
Release |
: 2004-05-07 |
ISBN-10 |
: 9789814482981 |
ISBN-13 |
: 9814482986 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Topics In The Theory Of Schrodinger Operators by : Huzihiro Araki
This invaluable book presents reviews of some recent topics in the theory of Schrödinger operators. It includes a short introduction to the subject, a survey of the theory of the Schrödinger equation when the potential depends on the time periodically, an introduction to the so-called FBI transformation (also known as coherent state expansion) with application to the semi-classical limit of the S-matrix, an overview of inverse spectral and scattering problems, and a study of the ground state of the Pauli-Fierz model with the use of the functional integral. The material is accessible to graduate students and non-expert researchers.
Author |
: R. Carmona |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 611 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461244882 |
ISBN-13 |
: 1461244889 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Spectral Theory of Random Schrödinger Operators by : R. Carmona
Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: • A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. • The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.
Author |
: Hans L. Cycon |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 337 |
Release |
: 1987 |
ISBN-10 |
: 9783540167587 |
ISBN-13 |
: 3540167587 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Schrödinger Operators by : Hans L. Cycon
Are you looking for a concise summary of the theory of Schrödinger operators? Here it is. Emphasizing the progress made in the last decade by Lieb, Enss, Witten and others, the three authors don’t just cover general properties, but also detail multiparticle quantum mechanics – including bound states of Coulomb systems and scattering theory. This corrected and extended reprint contains updated references as well as notes on the development in the field over the past twenty years.
Author |
: P.D. Hislop |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 331 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461207412 |
ISBN-13 |
: 146120741X |
Rating |
: 4/5 (12 Downloads) |
Synopsis Introduction to Spectral Theory by : P.D. Hislop
The intention of this book is to introduce students to active areas of research in mathematical physics in a rather direct way minimizing the use of abstract mathematics. The main features are geometric methods in spectral analysis, exponential decay of eigenfunctions, semi-classical analysis of bound state problems, and semi-classical analysis of resonance. A new geometric point of view along with new techniques are brought out in this book which have both been discovered within the past decade. This book is designed to be used as a textbook, unlike the competitors which are either too fundamental in their approach or are too abstract in nature to be considered as texts. The authors' text fills a gap in the marketplace.
Author |
: Gerald Teschl |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 322 |
Release |
: 2009 |
ISBN-10 |
: 9780821846605 |
ISBN-13 |
: 0821846604 |
Rating |
: 4/5 (05 Downloads) |
Synopsis Mathematical Methods in Quantum Mechanics by : Gerald Teschl
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Author |
: Sergio Albeverio |
Publisher |
: Springer Nature |
Total Pages |
: 316 |
Release |
: 2021-06-03 |
ISBN-10 |
: 9783030684907 |
ISBN-13 |
: 3030684903 |
Rating |
: 4/5 (07 Downloads) |
Synopsis Schrödinger Operators, Spectral Analysis and Number Theory by : Sergio Albeverio
This book gives its readers a unique opportunity to get acquainted with new aspects of the fruitful interactions between Analysis, Geometry, Quantum Mechanics and Number Theory. The present book contains a number of contributions by specialists in these areas as an homage to the memory of the mathematician Erik Balslev and, at the same time, advancing a fascinating interdisciplinary area still full of potential. Erik Balslev has made original and important contributions to several areas of Mathematics and its applications. He belongs to the founders of complex scaling, one of the most important methods in the mathematical and physical study of eigenvalues and resonances of Schrödinger operators, which has been very essential in advancing the solution of fundamental problems in Quantum Mechanics and related areas. He was also a pioneer in making available and developing spectral methods in the study of important problems in Analytic Number Theory.
Author |
: Konrad Schmüdgen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 435 |
Release |
: 2012-07-09 |
ISBN-10 |
: 9789400747531 |
ISBN-13 |
: 9400747535 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Unbounded Self-adjoint Operators on Hilbert Space by : Konrad Schmüdgen
The book is a graduate text on unbounded self-adjoint operators on Hilbert space and their spectral theory with the emphasis on applications in mathematical physics (especially, Schrödinger operators) and analysis (Dirichlet and Neumann Laplacians, Sturm-Liouville operators, Hamburger moment problem) . Among others, a number of advanced special topics are treated on a text book level accompanied by numerous illustrating examples and exercises. The main themes of the book are the following: - Spectral integrals and spectral decompositions of self-adjoint and normal operators - Perturbations of self-adjointness and of spectra of self-adjoint operators - Forms and operators - Self-adjoint extension theory :boundary triplets, Krein-Birman-Vishik theory of positive self-adjoint extension
Author |
: Brian C. Hall |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 566 |
Release |
: 2013-06-19 |
ISBN-10 |
: 9781461471165 |
ISBN-13 |
: 1461471168 |
Rating |
: 4/5 (65 Downloads) |
Synopsis Quantum Theory for Mathematicians by : Brian C. Hall
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Author |
: Rafael del Río |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 264 |
Release |
: 2004 |
ISBN-10 |
: 9780821832974 |
ISBN-13 |
: 0821832972 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Spectral Theory of Schrodinger Operators by : Rafael del Río
This volume gathers the articles based on a series of lectures from a workshop held at the Institute of Applied Mathematics of the National University of Mexico. The aim of the book is to present to a non-specialized audience the basic tools needed to understand and appreciate new trends of research on Schrodinger operator theory. Topics discussed include various aspects of the spectral theory of differential operators, the theory of self-adjoint operators, finite rank perturbations, spectral properties of random Schrodinger operators, and scattering theory for Schrodinger operators. The material is suitable for graduate students and research mathematicians interested in differential operators, in particular, spectral theory of Schrodinger operators.