Topics In The Geometry Of Projective Space
Download Topics In The Geometry Of Projective Space full books in PDF, epub, and Kindle. Read online free Topics In The Geometry Of Projective Space ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: R. Lazarsfeld |
Publisher |
: Birkhäuser |
Total Pages |
: 51 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783034893480 |
ISBN-13 |
: 3034893485 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Topics in the Geometry of Projective Space by : R. Lazarsfeld
The main topics discussed at the D. M. V. Seminar were the connectedness theorems of Fulton and Hansen, linear normality and subvarieties of small codimension in projective spaces. They are closely related; thus the connectedness theorem can be used to prove the inequality-part of Hartshorne's conjecture on linear normality, whereas Deligne's generalisation of the connectedness theorem leads to a refinement of Barth's results on the topology of varieties with small codimension in a projective space. The material concerning the connectedness theorem itself (including the highly surprising application to tamely ramified coverings of the projective plane) can be found in the paper by Fulton and the first author: W. Fulton, R. Lazarsfeld, Connectivity and its applications in algebraic geometry, Lecture Notes in Math. 862, p. 26-92 (Springer 1981). It was never intended to be written out in these notes. As to linear normality, the situation is different. The main point was an exposition of Zak's work, for most of which there is no reference but his letters. Thus it is appropriate to take an extended version of the content of the lectures as the central part of these notes.
Author |
: C. R. Wylie |
Publisher |
: Courier Corporation |
Total Pages |
: 578 |
Release |
: 2011-09-12 |
ISBN-10 |
: 9780486141701 |
ISBN-13 |
: 0486141705 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Introduction to Projective Geometry by : C. R. Wylie
This lucid introductory text offers both an analytic and an axiomatic approach to plane projective geometry. The analytic treatment builds and expands upon students' familiarity with elementary plane analytic geometry and provides a well-motivated approach to projective geometry. Subsequent chapters explore Euclidean and non-Euclidean geometry as specializations of the projective plane, revealing the existence of an infinite number of geometries, each Euclidean in nature but characterized by a different set of distance- and angle-measurement formulas. Outstanding pedagogical features include worked-through examples, introductions and summaries for each topic, and numerous theorems, proofs, and exercises that reinforce each chapter's precepts. Two helpful indexes conclude the text, along with answers to all odd-numbered exercises. In addition to its value to undergraduate students of mathematics, computer science, and secondary mathematics education, this volume provides an excellent reference for computer science professionals.
Author |
: Jürgen Richter-Gebert |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 573 |
Release |
: 2011-02-04 |
ISBN-10 |
: 9783642172861 |
ISBN-13 |
: 3642172865 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Perspectives on Projective Geometry by : Jürgen Richter-Gebert
Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.
Author |
: Charles Eugene Springer |
Publisher |
: |
Total Pages |
: 322 |
Release |
: 1964 |
ISBN-10 |
: UOM:39015049391850 |
ISBN-13 |
: |
Rating |
: 4/5 (50 Downloads) |
Synopsis Geometry and Analysis of Projective Spaces by : Charles Eugene Springer
Author |
: Albrecht Beutelspacher |
Publisher |
: Cambridge University Press |
Total Pages |
: 272 |
Release |
: 1998-01-29 |
ISBN-10 |
: 0521483646 |
ISBN-13 |
: 9780521483643 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Projective Geometry by : Albrecht Beutelspacher
Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.
Author |
: Evgueni A. Tevelev |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 257 |
Release |
: 2006-03-30 |
ISBN-10 |
: 9783540269571 |
ISBN-13 |
: 3540269576 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Projective Duality and Homogeneous Spaces by : Evgueni A. Tevelev
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
Author |
: Mauro Beltrametti |
Publisher |
: European Mathematical Society |
Total Pages |
: 512 |
Release |
: 2009 |
ISBN-10 |
: 3037190647 |
ISBN-13 |
: 9783037190647 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Lectures on Curves, Surfaces and Projective Varieties by : Mauro Beltrametti
This book offers a wide-ranging introduction to algebraic geometry along classical lines. It consists of lectures on topics in classical algebraic geometry, including the basic properties of projective algebraic varieties, linear systems of hypersurfaces, algebraic curves (with special emphasis on rational curves), linear series on algebraic curves, Cremona transformations, rational surfaces, and notable examples of special varieties like the Segre, Grassmann, and Veronese varieties. An integral part and special feature of the presentation is the inclusion of many exercises, not easy to find in the literature and almost all with complete solutions. The text is aimed at students in the last two years of an undergraduate program in mathematics. It contains some rather advanced topics suitable for specialized courses at the advanced undergraduate or beginning graduate level, as well as interesting topics for a senior thesis. The prerequisites have been deliberately limited to basic elements of projective geometry and abstract algebra. Thus, for example, some knowledge of the geometry of subspaces and properties of fields is assumed. The book will be welcomed by teachers and students of algebraic geometry who are seeking a clear and panoramic path leading from the basic facts about linear subspaces, conics and quadrics to a systematic discussion of classical algebraic varieties and the tools needed to study them. The text provides a solid foundation for approaching more advanced and abstract literature.
Author |
: Johannes Ueberberg |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 259 |
Release |
: 2011-08-26 |
ISBN-10 |
: 9783642209727 |
ISBN-13 |
: 3642209726 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Foundations of Incidence Geometry by : Johannes Ueberberg
Incidence geometry is a central part of modern mathematics that has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader.
Author |
: Igor Rostislavovich Shafarevich |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 292 |
Release |
: 1994 |
ISBN-10 |
: 3540575545 |
ISBN-13 |
: 9783540575542 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Basic Algebraic Geometry 2 by : Igor Rostislavovich Shafarevich
The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.
Author |
: Olive Whicher |
Publisher |
: Rudolf Steiner Press |
Total Pages |
: 294 |
Release |
: 2013 |
ISBN-10 |
: 9781855843790 |
ISBN-13 |
: 185584379X |
Rating |
: 4/5 (90 Downloads) |
Synopsis Projective Geometry by : Olive Whicher
Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as, "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being. Olive Whicher's groundbreaking book presents an accessible--non-mathematician's--approach to projective geometry. Profusely illustrated, and written with fire and intuitive genius, this work will be of interest to anyone wishing to cultivate the power of inner visualization in a realm of structural beauty.