Topics in Semidefinite and Interior-Point Methods

Topics in Semidefinite and Interior-Point Methods
Author :
Publisher : American Mathematical Soc.
Total Pages : 272
Release :
ISBN-10 : 9780821808252
ISBN-13 : 0821808257
Rating : 4/5 (52 Downloads)

Synopsis Topics in Semidefinite and Interior-Point Methods by : Panos M. Pardalos

This volume presents refereed papers presented at the workshop Semidefinite Programming and Interior-Point Approaches for Combinatorial Problems: held at The Fields Institute in May 1996. Semidefinite programming (SDP) is a generalization of linear programming (LP) in that the non-negativity constraints on the variables is replaced by a positive semidefinite constraint on matrix variables. Many of the elegant theoretical properties and powerful solution techniques follow through from LP to SDP. In particular, the primal-dual interior-point methods, which are currently so successful for LP, can be used to efficiently solve SDP problems. In addition to the theoretical and algorithmic questions, SDP has found many important applications in combinatorial optimization, control theory and other areas of mathematical programming. The papers in this volume cover a wide spectrum of recent developments in SDP. The volume would be suitable as a textbook for advanced courses in optimization. It is intended for graduate students and researchers in mathematics, computer science, engineering and operations.

Aspects of Semidefinite Programming

Aspects of Semidefinite Programming
Author :
Publisher : Springer Science & Business Media
Total Pages : 287
Release :
ISBN-10 : 9781402005473
ISBN-13 : 1402005474
Rating : 4/5 (73 Downloads)

Synopsis Aspects of Semidefinite Programming by : E. de Klerk

Semidefinite programming has been described as linear programming for the year 2000. It is an exciting new branch of mathematical programming, due to important applications in control theory, combinatorial optimization and other fields. Moreover, the successful interior point algorithms for linear programming can be extended to semidefinite programming. In this monograph the basic theory of interior point algorithms is explained. This includes the latest results on the properties of the central path as well as the analysis of the most important classes of algorithms. Several "classic" applications of semidefinite programming are also described in detail. These include the Lovász theta function and the MAX-CUT approximation algorithm by Goemans and Williamson. Audience: Researchers or graduate students in optimization or related fields, who wish to learn more about the theory and applications of semidefinite programming.

Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming
Author :
Publisher : SIAM
Total Pages : 414
Release :
ISBN-10 : 1611970792
ISBN-13 : 9781611970791
Rating : 4/5 (92 Downloads)

Synopsis Interior-point Polynomial Algorithms in Convex Programming by : Yurii Nesterov

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Interior Point Techniques in Optimization

Interior Point Techniques in Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 285
Release :
ISBN-10 : 9781475755619
ISBN-13 : 1475755619
Rating : 4/5 (19 Downloads)

Synopsis Interior Point Techniques in Optimization by : B. Jansen

Operations research and mathematical programming would not be as advanced today without the many advances in interior point methods during the last decade. These methods can now solve very efficiently and robustly large scale linear, nonlinear and combinatorial optimization problems that arise in various practical applications. The main ideas underlying interior point methods have influenced virtually all areas of mathematical programming including: analyzing and solving linear and nonlinear programming problems, sensitivity analysis, complexity analysis, the analysis of Newton's method, decomposition methods, polynomial approximation for combinatorial problems etc. This book covers the implications of interior techniques for the entire field of mathematical programming, bringing together many results in a uniform and coherent way. For the topics mentioned above the book provides theoretical as well as computational results, explains the intuition behind the main ideas, gives examples as well as proofs, and contains an extensive up-to-date bibliography. Audience: The book is intended for students, researchers and practitioners with a background in operations research, mathematics, mathematical programming, or statistics.

Primal-dual Interior-Point Methods

Primal-dual Interior-Point Methods
Author :
Publisher : SIAM
Total Pages : 309
Release :
ISBN-10 : 1611971454
ISBN-13 : 9781611971453
Rating : 4/5 (54 Downloads)

Synopsis Primal-dual Interior-Point Methods by : Stephen J. Wright

In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.

Lectures on Modern Convex Optimization

Lectures on Modern Convex Optimization
Author :
Publisher : SIAM
Total Pages : 500
Release :
ISBN-10 : 9780898714913
ISBN-13 : 0898714915
Rating : 4/5 (13 Downloads)

Synopsis Lectures on Modern Convex Optimization by : Aharon Ben-Tal

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Topics in Operator Theory

Topics in Operator Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 624
Release :
ISBN-10 : 9783034601580
ISBN-13 : 3034601581
Rating : 4/5 (80 Downloads)

Synopsis Topics in Operator Theory by : Joseph A. Ball

This is the first volume of a collection of original and review articles on recent advances and new directions in a multifaceted and interconnected area of mathematics and its applications. It encompasses many topics in theoretical developments in operator theory and its diverse applications in applied mathematics, physics, engineering, and other disciplines. The purpose is to bring in one volume many important original results of cutting edge research as well as authoritative review of recent achievements, challenges, and future directions in the area of operator theory and its applications.

Semidefinite Optimization and Convex Algebraic Geometry

Semidefinite Optimization and Convex Algebraic Geometry
Author :
Publisher : SIAM
Total Pages : 487
Release :
ISBN-10 : 9781611972283
ISBN-13 : 1611972280
Rating : 4/5 (83 Downloads)

Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman

An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.

Interior Point Methods for Linear Optimization

Interior Point Methods for Linear Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 501
Release :
ISBN-10 : 9780387263793
ISBN-13 : 0387263799
Rating : 4/5 (93 Downloads)

Synopsis Interior Point Methods for Linear Optimization by : Cornelis Roos

The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.

Handbook on Semidefinite, Conic and Polynomial Optimization

Handbook on Semidefinite, Conic and Polynomial Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 955
Release :
ISBN-10 : 9781461407690
ISBN-13 : 1461407699
Rating : 4/5 (90 Downloads)

Synopsis Handbook on Semidefinite, Conic and Polynomial Optimization by : Miguel F. Anjos

Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.