Tools for PDE

Tools for PDE
Author :
Publisher : American Mathematical Soc.
Total Pages : 274
Release :
ISBN-10 : 9780821843789
ISBN-13 : 0821843788
Rating : 4/5 (89 Downloads)

Synopsis Tools for PDE by : Michael E. Taylor

Developing three related tools that are useful in the analysis of partial differential equations (PDEs) arising from the classical study of singular integral operators, this text considers pseudodifferential operators, paradifferential operators, and layer potentials.

Tools and Problems in Partial Differential Equations

Tools and Problems in Partial Differential Equations
Author :
Publisher : Springer Nature
Total Pages : 362
Release :
ISBN-10 : 9783030502843
ISBN-13 : 3030502848
Rating : 4/5 (43 Downloads)

Synopsis Tools and Problems in Partial Differential Equations by : Thomas Alazard

This textbook offers a unique learning-by-doing introduction to the modern theory of partial differential equations. Through 65 fully solved problems, the book offers readers a fast but in-depth introduction to the field, covering advanced topics in microlocal analysis, including pseudo- and para-differential calculus, and the key classical equations, such as the Laplace, Schrödinger or Navier-Stokes equations. Essentially self-contained, the book begins with problems on the necessary tools from functional analysis, distributions, and the theory of functional spaces, and in each chapter the problems are preceded by a summary of the relevant results of the theory. Informed by the authors' extensive research experience and years of teaching, this book is for graduate students and researchers who wish to gain real working knowledge of the subject.

New Tools for Nonlinear PDEs and Application

New Tools for Nonlinear PDEs and Application
Author :
Publisher : Springer
Total Pages : 392
Release :
ISBN-10 : 9783030109370
ISBN-13 : 3030109372
Rating : 4/5 (70 Downloads)

Synopsis New Tools for Nonlinear PDEs and Application by : Marcello D'Abbicco

This book features a collection of papers devoted to recent results in nonlinear partial differential equations and applications. It presents an excellent source of information on the state-of-the-art, new methods, and trends in this topic and related areas. Most of the contributors presented their work during the sessions "Recent progress in evolution equations" and "Nonlinear PDEs" at the 12th ISAAC congress held in 2017 in Växjö, Sweden. Even if inspired by this event, this book is not merely a collection of proceedings, but a stand-alone project gathering original contributions from active researchers on the latest trends in nonlinear evolution PDEs.

Variational Techniques for Elliptic Partial Differential Equations

Variational Techniques for Elliptic Partial Differential Equations
Author :
Publisher : CRC Press
Total Pages : 515
Release :
ISBN-10 : 9780429016202
ISBN-13 : 0429016204
Rating : 4/5 (02 Downloads)

Synopsis Variational Techniques for Elliptic Partial Differential Equations by : Francisco J. Sayas

Variational Techniques for Elliptic Partial Differential Equations, intended for graduate students studying applied math, analysis, and/or numerical analysis, provides the necessary tools to understand the structure and solvability of elliptic partial differential equations. Beginning with the necessary definitions and theorems from distribution theory, the book gradually builds the functional analytic framework for studying elliptic PDE using variational formulations. Rather than introducing all of the prerequisites in the first chapters, it is the introduction of new problems which motivates the development of the associated analytical tools. In this way the student who is encountering this material for the first time will be aware of exactly what theory is needed, and for which problems. Features A detailed and rigorous development of the theory of Sobolev spaces on Lipschitz domains, including the trace operator and the normal component of vector fields An integration of functional analysis concepts involving Hilbert spaces and the problems which can be solved with these concepts, rather than separating the two Introduction to the analytical tools needed for physical problems of interest like time-harmonic waves, Stokes and Darcy flow, surface differential equations, Maxwell cavity problems, etc. A variety of problems which serve to reinforce and expand upon the material in each chapter, including applications in fluid and solid mechanics

PETSc for Partial Differential Equations: Numerical Solutions in C and Python

PETSc for Partial Differential Equations: Numerical Solutions in C and Python
Author :
Publisher : SIAM
Total Pages : 407
Release :
ISBN-10 : 9781611976311
ISBN-13 : 1611976316
Rating : 4/5 (11 Downloads)

Synopsis PETSc for Partial Differential Equations: Numerical Solutions in C and Python by : Ed Bueler

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.

Principles of Partial Differential Equations

Principles of Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 165
Release :
ISBN-10 : 9781441910950
ISBN-13 : 1441910956
Rating : 4/5 (50 Downloads)

Synopsis Principles of Partial Differential Equations by : Alexander Komech

This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.

Pseudodifferential Operators and Nonlinear PDE

Pseudodifferential Operators and Nonlinear PDE
Author :
Publisher : Springer Science & Business Media
Total Pages : 234
Release :
ISBN-10 : 0817635955
ISBN-13 : 9780817635954
Rating : 4/5 (55 Downloads)

Synopsis Pseudodifferential Operators and Nonlinear PDE by : Michael Taylor

For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. This book is devoted to a summary and reconsideration of some used of pseudodifferential operator techniques in nonlinear PDE. The book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.

A Tutorial on Elliptic PDE Solvers and Their Parallelization

A Tutorial on Elliptic PDE Solvers and Their Parallelization
Author :
Publisher : SIAM
Total Pages : 153
Release :
ISBN-10 : 0898718171
ISBN-13 : 9780898718171
Rating : 4/5 (71 Downloads)

Synopsis A Tutorial on Elliptic PDE Solvers and Their Parallelization by : Craig C. Douglas

This compact yet thorough tutorial is the perfect introduction to the basic concepts of solving partial differential equations (PDEs) using parallel numerical methods. In just eight short chapters, the authors provide readers with enough basic knowledge of PDEs, discretization methods, solution techniques, parallel computers, parallel programming, and the run-time behavior of parallel algorithms to allow them to understand, develop, and implement parallel PDE solvers. Examples throughout the book are intentionally kept simple so that the parallelization strategies are not dominated by technical details.

Computational Partial Differential Equations

Computational Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 704
Release :
ISBN-10 : 9783662011706
ISBN-13 : 3662011700
Rating : 4/5 (06 Downloads)

Synopsis Computational Partial Differential Equations by : Hans Petter Langtangen

Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations
Author :
Publisher : SIAM
Total Pages : 356
Release :
ISBN-10 : 0898717833
ISBN-13 : 9780898717839
Rating : 4/5 (33 Downloads)

Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.