Time Series Analysis, Modeling and Applications

Time Series Analysis, Modeling and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 398
Release :
ISBN-10 : 9783642334399
ISBN-13 : 3642334393
Rating : 4/5 (99 Downloads)

Synopsis Time Series Analysis, Modeling and Applications by : Witold Pedrycz

Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Internet activities, etc.). A quest for a thorough analysis, interpretation, modeling and prediction of time series comes with an ongoing challenge for developing models that are both accurate and user-friendly (interpretable). The volume is aimed to exploit the conceptual and algorithmic framework of Computational Intelligence (CI) to form a cohesive and comprehensive environment for building models of time series. The contributions covered in the volume are fully reflective of the wealth of the CI technologies by bringing together ideas, algorithms, and numeric studies, which convincingly demonstrate their relevance, maturity and visible usefulness. It reflects upon the truly remarkable diversity of methodological and algorithmic approaches and case studies. This volume is aimed at a broad audience of researchers and practitioners engaged in various branches of operations research, management, social sciences, engineering, and economics. Owing to the nature of the material being covered and a way it has been arranged, it establishes a comprehensive and timely picture of the ongoing pursuits in the area and fosters further developments.

Time Series Analysis and Its Applications

Time Series Analysis and Its Applications
Author :
Publisher :
Total Pages : 568
Release :
ISBN-10 : 1475732627
ISBN-13 : 9781475732627
Rating : 4/5 (27 Downloads)

Synopsis Time Series Analysis and Its Applications by : Robert H. Shumway

Applied Time Series Analysis

Applied Time Series Analysis
Author :
Publisher : Academic Press
Total Pages : 354
Release :
ISBN-10 : 9780128131176
ISBN-13 : 0128131179
Rating : 4/5 (76 Downloads)

Synopsis Applied Time Series Analysis by : Terence C. Mills

Written for those who need an introduction, Applied Time Series Analysis reviews applications of the popular econometric analysis technique across disciplines. Carefully balancing accessibility with rigor, it spans economics, finance, economic history, climatology, meteorology, and public health. Terence Mills provides a practical, step-by-step approach that emphasizes core theories and results without becoming bogged down by excessive technical details. Including univariate and multivariate techniques, Applied Time Series Analysis provides data sets and program files that support a broad range of multidisciplinary applications, distinguishing this book from others.

Forecasting: principles and practice

Forecasting: principles and practice
Author :
Publisher : OTexts
Total Pages : 380
Release :
ISBN-10 : 9780987507112
ISBN-13 : 0987507117
Rating : 4/5 (12 Downloads)

Synopsis Forecasting: principles and practice by : Rob J Hyndman

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Handbook of Time Series Analysis

Handbook of Time Series Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 514
Release :
ISBN-10 : 9783527609512
ISBN-13 : 3527609512
Rating : 4/5 (12 Downloads)

Synopsis Handbook of Time Series Analysis by : Björn Schelter

This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest developments will profit from this handbook.

Time Series Analysis

Time Series Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 501
Release :
ISBN-10 : 9780387759586
ISBN-13 : 0387759581
Rating : 4/5 (86 Downloads)

Synopsis Time Series Analysis by : Jonathan D. Cryer

This book presents an accessible approach to understanding time series models and their applications. The ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.

Introduction to Time Series Modeling with Applications in R

Introduction to Time Series Modeling with Applications in R
Author :
Publisher : CRC Press
Total Pages : 332
Release :
ISBN-10 : 9780429582622
ISBN-13 : 0429582625
Rating : 4/5 (22 Downloads)

Synopsis Introduction to Time Series Modeling with Applications in R by : Genshiro Kitagawa

Praise for the first edition: [This book] reflects the extensive experience and significant contributions of the author to non-linear and non-Gaussian modeling. ... [It] is a valuable book, especially with its broad and accessible introduction of models in the state-space framework. –Statistics in Medicine What distinguishes this book from comparable introductory texts is the use of state-space modeling. Along with this come a number of valuable tools for recursive filtering and smoothing, including the Kalman filter, as well as non-Gaussian and sequential Monte Carlo filters. –MAA Reviews Introduction to Time Series Modeling with Applications in R, Second Edition covers numerous stationary and nonstationary time series models and tools for estimating and utilizing them. The goal of this book is to enable readers to build their own models to understand, predict and master time series. The second edition makes it possible for readers to reproduce examples in this book by using the freely available R package TSSS to perform computations for their own real-world time series problems. This book employs the state-space model as a generic tool for time series modeling and presents the Kalman filter, the non-Gaussian filter and the particle filter as convenient tools for recursive estimation for state-space models. Further, it also takes a unified approach based on the entropy maximization principle and employs various methods of parameter estimation and model selection, including the least squares method, the maximum likelihood method, recursive estimation for state-space models and model selection by AIC. Along with the standard stationary time series models, such as the AR and ARMA models, the book also introduces nonstationary time series models such as the locally stationary AR model, the trend model, the seasonal adjustment model, the time-varying coefficient AR model and nonlinear non-Gaussian state-space models. About the Author: Genshiro Kitagawa is a project professor at the University of Tokyo, the former Director-General of the Institute of Statistical Mathematics, and the former President of the Research Organization of Information and Systems.

Practical Time Series Analysis

Practical Time Series Analysis
Author :
Publisher : O'Reilly Media
Total Pages : 500
Release :
ISBN-10 : 9781492041627
ISBN-13 : 1492041629
Rating : 4/5 (27 Downloads)

Synopsis Practical Time Series Analysis by : Aileen Nielsen

Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance

Multivariate Time Series Analysis and Applications

Multivariate Time Series Analysis and Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 536
Release :
ISBN-10 : 9781119502852
ISBN-13 : 1119502853
Rating : 4/5 (52 Downloads)

Synopsis Multivariate Time Series Analysis and Applications by : William W. S. Wei

An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.

Time Series Analysis Univariate and Multivariate Methods

Time Series Analysis Univariate and Multivariate Methods
Author :
Publisher : Pearson
Total Pages : 648
Release :
ISBN-10 : 0134995368
ISBN-13 : 9780134995366
Rating : 4/5 (68 Downloads)

Synopsis Time Series Analysis Univariate and Multivariate Methods by : William W. S. Wei

With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.