Three-Dimensional Elasticity

Three-Dimensional Elasticity
Author :
Publisher : Elsevier
Total Pages : 495
Release :
ISBN-10 : 9780080875415
ISBN-13 : 0080875416
Rating : 4/5 (15 Downloads)

Synopsis Three-Dimensional Elasticity by :

This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.

Three-Dimensional Elastic Bodies in Rolling Contact

Three-Dimensional Elastic Bodies in Rolling Contact
Author :
Publisher : Springer Science & Business Media
Total Pages : 352
Release :
ISBN-10 : 0792307127
ISBN-13 : 9780792307129
Rating : 4/5 (27 Downloads)

Synopsis Three-Dimensional Elastic Bodies in Rolling Contact by : J.J. Kalker

This book is intended for mechanicians, engineering mathematicians, and, generally for theoretically inclined mechanical engineers. It has its origin in my Master's Thesis (J 957), which I wrote under the supervision of Professor Dr. R. Timman of the Delft TH and Dr. Ir. A. D. de Pater of Netherlands Railways. I did not think that the surface of the problem had even been scratched, so I joined de Pater, who had by then become Professor in the Engineering Mechanics Lab. of the Delft TH, to write my Ph. D. Thesis on it. This thesis (1967) was weil received in railway circles, which is due more to de Pater's untiring promotion than to its merits. Still not satisfied, I feit that I needed more mathe matics, and I joined Professor Timman's group as an Associate Professor. This led to the present work. Many thanks are due to G. M. L. Gladwell, who thoroughly polished style and contents of the manuscript. Thanks are also due to my wife, herself an engineering mathematician, who read the manuscript through critically, and made many helpful comments, to G. F. M. Braat, who also read an criticised, and, in addition, drew the figures together with J. Schonewille, to Ms. A. V. M. de Wit, Ms. M. den Boef, and Ms. P. c. Wilting, who typed the manuscript, and to the Publishers, who waited patiently. Delft-Rotterdam, 17 July 1990. J. J.

Theory of Elasticity

Theory of Elasticity
Author :
Publisher : Springer Science & Business Media
Total Pages : 1036
Release :
ISBN-10 : 9783540264552
ISBN-13 : 3540264558
Rating : 4/5 (52 Downloads)

Synopsis Theory of Elasticity by : A.I. Lurie

The classical theory of elasticity maintains a place of honour in the science ofthe behaviour ofsolids. Its basic definitions are general for all branches of this science, whilst the methods forstating and solving these problems serve as examples of its application. The theories of plasticity, creep, viscoelas ticity, and failure of solids do not adequately encompass the significance of the methods of the theory of elasticity for substantiating approaches for the calculation of stresses in structures and machines. These approaches constitute essential contributions in the sciences of material resistance and structural mechanics. The first two chapters form Part I of this book and are devoted to the basic definitions ofcontinuum mechanics; namely stress tensors (Chapter 1) and strain tensors (Chapter 2). The necessity to distinguish between initial and actual states in the nonlinear theory does not allow one to be content with considering a single strain measure. For this reason, it is expedient to introduce more rigorous tensors to describe the stress-strain state. These are considered in Section 1.3 for which the study of Sections 2.3-2.5 should precede. The mastering of the content of these sections can be postponed until the nonlinear theory is studied in Chapters 8 and 9.

Lectures on Three-Dimensional Elasticity

Lectures on Three-Dimensional Elasticity
Author :
Publisher : Springer
Total Pages : 153
Release :
ISBN-10 : 3540123318
ISBN-13 : 9783540123316
Rating : 4/5 (18 Downloads)

Synopsis Lectures on Three-Dimensional Elasticity by : P. G. Ciarlet

Three-Dimensional Elasticity

Three-Dimensional Elasticity
Author :
Publisher : Elsevier
Total Pages : 500
Release :
ISBN-10 : 044481776X
ISBN-13 : 9780444817761
Rating : 4/5 (6X Downloads)

Synopsis Three-Dimensional Elasticity by : Philippe G. Ciarlet

This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.

Mathematical Foundations of Elasticity

Mathematical Foundations of Elasticity
Author :
Publisher : Courier Corporation
Total Pages : 578
Release :
ISBN-10 : 9780486142272
ISBN-13 : 0486142272
Rating : 4/5 (72 Downloads)

Synopsis Mathematical Foundations of Elasticity by : Jerrold E. Marsden

Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.

Three-Dimensional Elastic Bodies in Rolling Contact

Three-Dimensional Elastic Bodies in Rolling Contact
Author :
Publisher : Springer Science & Business Media
Total Pages : 331
Release :
ISBN-10 : 9789401578899
ISBN-13 : 9401578893
Rating : 4/5 (99 Downloads)

Synopsis Three-Dimensional Elastic Bodies in Rolling Contact by : J.J. Kalker

This book is intended for mechanicians, engineering mathematicians, and, generally for theoretically inclined mechanical engineers. It has its origin in my Master's Thesis (J 957), which I wrote under the supervision of Professor Dr. R. Timman of the Delft TH and Dr. Ir. A. D. de Pater of Netherlands Railways. I did not think that the surface of the problem had even been scratched, so I joined de Pater, who had by then become Professor in the Engineering Mechanics Lab. of the Delft TH, to write my Ph. D. Thesis on it. This thesis (1967) was weil received in railway circles, which is due more to de Pater's untiring promotion than to its merits. Still not satisfied, I feit that I needed more mathe matics, and I joined Professor Timman's group as an Associate Professor. This led to the present work. Many thanks are due to G. M. L. Gladwell, who thoroughly polished style and contents of the manuscript. Thanks are also due to my wife, herself an engineering mathematician, who read the manuscript through critically, and made many helpful comments, to G. F. M. Braat, who also read an criticised, and, in addition, drew the figures together with J. Schonewille, to Ms. A. V. M. de Wit, Ms. M. den Boef, and Ms. P. c. Wilting, who typed the manuscript, and to the Publishers, who waited patiently. Delft-Rotterdam, 17 July 1990. J. J.

Elasticity

Elasticity
Author :
Publisher : Courier Corporation
Total Pages : 468
Release :
ISBN-10 : 9780486150079
ISBN-13 : 0486150070
Rating : 4/5 (79 Downloads)

Synopsis Elasticity by : Robert William Soutas-Little

A comprehensive survey of the methods and theories of linear elasticity, this three-part introductory treatment covers general theory, two-dimensional elasticity, and three-dimensional elasticity. Ideal text for a two-course sequence on elasticity. 1984 edition.

Mathematical Elasticity, Volume II

Mathematical Elasticity, Volume II
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1611976790
ISBN-13 : 9781611976793
Rating : 4/5 (90 Downloads)

Synopsis Mathematical Elasticity, Volume II by : Philippe G. Ciarlet

The Mathematical Elasticity set contains three self-contained volumes that together provide the only modern treatise on elasticity. They introduce contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells. Each volume contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. An extended preface and extensive bibliography have been added to each volume to highlight the progress that has been made since the original publication. The first book, Three-Dimensional Elasticity, covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. In volume two, Theory of Plates, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. The objective of Theory of Shells, the final volume, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.

Introduction to Mathematical Elasticity

Introduction to Mathematical Elasticity
Author :
Publisher : World Scientific
Total Pages : 317
Release :
ISBN-10 : 9789814273725
ISBN-13 : 9814273724
Rating : 4/5 (25 Downloads)

Synopsis Introduction to Mathematical Elasticity by : L. P. Lebedev

This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability.Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems.