Theory Of Reflection Of Electromagnetic And Particle Waves
Download Theory Of Reflection Of Electromagnetic And Particle Waves full books in PDF, epub, and Kindle. Read online free Theory Of Reflection Of Electromagnetic And Particle Waves ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: John Lekner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 298 |
Release |
: 1987-02-28 |
ISBN-10 |
: 9024734185 |
ISBN-13 |
: 9789024734184 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Theory of Reflection of Electromagnetic and Particle Waves by : John Lekner
This book is written for scientists and engineers whose work involves wave reflec tion or transmission. Most of the book is written in the language of electromagnetic theory, but, as the title suggests, many of the results can be applied to particle waves, specifically to those satisfying the Schr6dinger equation. The mathematical connection between electromagnetic s (or TE) waves and quantum particle waves is established in Chapter 1. The main results for s waves are translated into quantum mechanical language in the Appendix. There is also a close analogy between acoustic waves and electromagnetic p (or TM) waves, as shown in Section 1-4. Thus the book, though primarily intended for those working in optics, microwaves and radio, will be of use to physicists, chemists and electrical engineers studying reflection and transmission of particles at potential barriers. The tech niques developed here can also be used by those working in acoustics, ocean ography and seismology. Chapter 1 is recommended for all readers: it introduces reflection phenomena, defines the notation, and previews (in Section 1-6) the contents of the rest of the book. This preview will not be duplicated here. We note only that applied topics do appear: two examples are the important phenomenon of attenuated total reflection in Chapter 8, and the reflectivity of multilayer dielectric mirrors in Chapter 12. The subject matter is restricted to linear classical electrodynamics in non-magnetic media, and the corresponding particle analogues.
Author |
: John Lekner |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 282 |
Release |
: 2013-03-14 |
ISBN-10 |
: 9789401577489 |
ISBN-13 |
: 940157748X |
Rating |
: 4/5 (89 Downloads) |
Synopsis Theory of Reflection of Electromagnetic and Particle Waves by : John Lekner
This book is written for scientists and engineers whose work involves wave reflec tion or transmission. Most of the book is written in the language of electromagnetic theory, but, as the title suggests, many of the results can be applied to particle waves, specifically to those satisfying the Schr6dinger equation. The mathematical connection between electromagnetic s (or TE) waves and quantum particle waves is established in Chapter 1. The main results for s waves are translated into quantum mechanical language in the Appendix. There is also a close analogy between acoustic waves and electromagnetic p (or TM) waves, as shown in Section 1-4. Thus the book, though primarily intended for those working in optics, microwaves and radio, will be of use to physicists, chemists and electrical engineers studying reflection and transmission of particles at potential barriers. The tech niques developed here can also be used by those working in acoustics, ocean ography and seismology. Chapter 1 is recommended for all readers: it introduces reflection phenomena, defines the notation, and previews (in Section 1-6) the contents of the rest of the book. This preview will not be duplicated here. We note only that applied topics do appear: two examples are the important phenomenon of attenuated total reflection in Chapter 8, and the reflectivity of multilayer dielectric mirrors in Chapter 12. The subject matter is restricted to linear classical electrodynamics in non-magnetic media, and the corresponding particle analogues.
Author |
: John Lekner |
Publisher |
: Springer |
Total Pages |
: 539 |
Release |
: 2016-01-13 |
ISBN-10 |
: 9783319236278 |
ISBN-13 |
: 331923627X |
Rating |
: 4/5 (78 Downloads) |
Synopsis Theory of Reflection by : John Lekner
This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods, reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle waves at interfaces. It is intended for physicists, chemists, applied mathematicians and engineers, and is written in a simple direct style, with all necessary mathematics explained in the text.
Author |
: Ginger Butcher |
Publisher |
: |
Total Pages |
: 32 |
Release |
: 2010 |
ISBN-10 |
: UCSD:31822037815560 |
ISBN-13 |
: |
Rating |
: 4/5 (60 Downloads) |
Synopsis Tour of the Electromagnetic Spectrum by : Ginger Butcher
Author |
: OpenStax |
Publisher |
: |
Total Pages |
: 622 |
Release |
: 2016-11-04 |
ISBN-10 |
: 1680920456 |
ISBN-13 |
: 9781680920451 |
Rating |
: 4/5 (56 Downloads) |
Synopsis University Physics by : OpenStax
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Author |
: Mike Goldsmith |
Publisher |
: Oxford University Press |
Total Pages |
: 161 |
Release |
: 2018-11-15 |
ISBN-10 |
: 9780192525710 |
ISBN-13 |
: 0192525719 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Waves: A Very Short Introduction by : Mike Goldsmith
We live in a world of waves. The Earth shakes to its foundations, the seas and oceans tremble incessantly, sounds reverberate through land, sea, and air. Beneath the skin, our brains and bodies are awash with waves of their own, and the Universe is filled by a vast spectrum of electromagnetic radiation, of which visible light is the narrowest sliver. Casting the net even wider, there are mechanical waves, quantum wave phenomena, and the now clearly detected gravitational waves. Look closer and deeper and more kinds of waves appear, down to the most fundamental level of reality. This Very Short Introduction looks at all the main kinds of wave, their sources, effects, and uses. Mike Goldsmith discusses how wave motion results in a range of phenomena, from reflection, diffraction, interference, and polarization in the case of light waves to beats and echoes for sound. All waves, however different, share many of the same features, and, as Goldsmith shows, for all their complexities many of their behaviours are fundamentally simple. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Author |
: Dan Fullerton |
Publisher |
: Silly Beagle Productions |
Total Pages |
: 300 |
Release |
: 2011-04-28 |
ISBN-10 |
: 9780983563303 |
ISBN-13 |
: 0983563306 |
Rating |
: 4/5 (03 Downloads) |
Synopsis APlusPhysics by : Dan Fullerton
APlusPhysics: Your Guide to Regents Physics Essentials is a clear and concise roadmap to the entire New York State Regents Physics curriculum, preparing students for success in their high school physics class as well as review for high marks on the Regents Physics Exam. Topics covered include pre-requisite math and trigonometry; kinematics; forces; Newton's Laws of Motion, circular motion and gravity; impulse and momentum; work, energy, and power; electrostatics; electric circuits; magnetism; waves; optics; and modern physics. Featuring more than five hundred questions from past Regents exams with worked out solutions and detailed illustrations, this book is integrated with the APlusPhysics.com website, which includes online question and answer forums, videos, animations, and supplemental problems to help you master Regents Physics essentials. "The best physics books are the ones kids will actually read." Advance Praise for APlusPhysics Regents Physics Essentials: "Very well written... simple, clear engaging and accessible. You hit a grand slam with this review book." -- Anthony, NY Regents Physics Teacher. "Does a great job giving students what they need to know. The value provided is amazing." -- Tom, NY Regents Physics Teacher. "This was tremendous preparation for my physics test. I love the detailed problem solutions." -- Jenny, NY Regents Physics Student. "Regents Physics Essentials has all the information you could ever need and is much easier to understand than many other textbooks... it is an excellent review tool and is truly written for students." -- Cat, NY Regents Physics Student
Author |
: Katsunari Okamoto |
Publisher |
: Elsevier |
Total Pages |
: 578 |
Release |
: 2010-08-04 |
ISBN-10 |
: 9780080455068 |
ISBN-13 |
: 0080455069 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Fundamentals of Optical Waveguides by : Katsunari Okamoto
Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)
Author |
: Samuel J. Ling |
Publisher |
: |
Total Pages |
: 828 |
Release |
: 2016-10-06 |
ISBN-10 |
: 193816816X |
ISBN-13 |
: 9781938168161 |
Rating |
: 4/5 (6X Downloads) |
Synopsis University Physics Volume 2 by : Samuel J. Ling
"University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result."--Open Textbook Library.
Author |
: Leung Tsang |
Publisher |
: John Wiley & Sons |
Total Pages |
: 441 |
Release |
: 2004-04-07 |
ISBN-10 |
: 9780471464235 |
ISBN-13 |
: 0471464236 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Scattering of Electromagnetic Waves by : Leung Tsang
A timely and authoritative guide to the state of the art of wave scattering Scattering of Electromagnetic Waves offers in three volumes a complete and up-to-date treatment of wave scattering by random discrete scatterers and rough surfaces. Written by leading scientists who have made important contributions to wave scattering over three decades, this new work explains the principles, methods, and applications of this rapidly expanding, interdisciplinary field. It covers both introductory and advanced material and provides students and researchers in remote sensing as well as imaging, optics, and electromagnetic theory with a one-stop reference to a wealth of current research results. Plus, Scattering of Electromagnetic Waves contains detailed discussions of both analytical and numerical methods, including cutting-edge techniques for the recovery of earth/land parametric information. The three volumes are entitled respectively Theories and Applications, Numerical Simulation, and Advanced Topics. In the first volume, Theories and Applications, Leung Tsang (University of Washington) Jin Au Kong (MIT), and Kung-Hau Ding (Air Force Research Lab) cover: * Basic theory of electromagnetic scattering * Fundamentals of random scattering * Characteristics of discrete scatterers and rough surfaces * Scattering and emission by layered media * Single scattering and applications * Radiative transfer theory and solution techniques * One-dimensional random rough surface scattering