Theoretical and Experimental Studies on Non-Fourier Heat Conduction Based on Thermomass Theory

Theoretical and Experimental Studies on Non-Fourier Heat Conduction Based on Thermomass Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 124
Release :
ISBN-10 : 9783642539770
ISBN-13 : 3642539777
Rating : 4/5 (70 Downloads)

Synopsis Theoretical and Experimental Studies on Non-Fourier Heat Conduction Based on Thermomass Theory by : Hai-Dong Wang

This book mainly focuses on the theoretical and experimental study of non-Fourier heat conduction behavior. A novel thermomass theory is used as the theoretical basis, which provides a general heat conduction equation for the accurate prediction of non-Fourier heat conduction. In order to prove the validity of this thermomass theory, a large current was used to heat the metallic nanofilm at the minimum temperature of 3 K. The measured average temperature of the nanofilm was notably higher than the prediction of Fourier’s heat diffusion equation, while matching well with the general heat conduction equation. This is the first time that steady non-Fourier heat conduction has been observed. Moreover, this book concerns the role of electron-phonon interaction in metallic nanofilms, which involves the breakdown of the Wiedemann-Franz law at low temperatures and interfacial thermal resistance at femtosecond timescales. Readers will find useful information on non-Fourier heat conduction and the latest advances in the study of charge and heat transport in metallic nanofilms.

Non-Fourier Heat Conduction

Non-Fourier Heat Conduction
Author :
Publisher : Springer Nature
Total Pages : 419
Release :
ISBN-10 : 9783031259739
ISBN-13 : 3031259734
Rating : 4/5 (39 Downloads)

Synopsis Non-Fourier Heat Conduction by : Alexander I. Zhmakin

This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.

Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems

Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems
Author :
Publisher : Springer
Total Pages : 145
Release :
ISBN-10 : 9783662484852
ISBN-13 : 3662484854
Rating : 4/5 (52 Downloads)

Synopsis Dynamical Analysis of Non-Fourier Heat Conduction and Its Application in Nanosystems by : Yuan Dong

This thesis studies the general heat conduction law, irreversible thermodynamics and the size effect of thermal conductivity exhibited in nanosystems from the perspective of recently developed thermomass theory. The derivation bridges the microscopic phonon Boltzmann equation and macroscopic continuum mechanics. Key concepts such as entropy production, temperature and the Onsager reciprocal relation are revisited in the case of non-Fourier heat conduction. Lastly, useful expressions are extracted from the picture of phonon gas dynamics and are used to successfully predict effective thermal conductivity in nanosystems.

Robotics and Mechatronics

Robotics and Mechatronics
Author :
Publisher : Springer
Total Pages : 319
Release :
ISBN-10 : 9783030176778
ISBN-13 : 3030176770
Rating : 4/5 (78 Downloads)

Synopsis Robotics and Mechatronics by : Richard (Chunhui) Yang

This book gathers the proceedings of the ISRM 2017, the fifth IFToMM International Symposium on Robotics and Mechatronics, which was jointly organised by the School of Computing, Engineering and Mathematics at Western Sydney University, Australia and by the IFToMM Technical Committee on Robotics and Mechatronics. The respective contributions showcase the latest advances, trends and future challenges in Computer Modelling and Simulation, Kinematics and Dynamics of Multi-Body Systems, Advanced Dynamics and Control Methods, Linkages and Mechanical Controls, Parallel Manipulators, Mechanism Design, Sensors and Actuators, Mobile Robotics: Navigation and Motion Planning, Bio-inspired Robotics, Micro/Nano-Robotics and Complex Robotic Systems.

Mesoscopic Theories of Heat Transport in Nanosystems

Mesoscopic Theories of Heat Transport in Nanosystems
Author :
Publisher : Springer
Total Pages : 188
Release :
ISBN-10 : 9783319272061
ISBN-13 : 3319272063
Rating : 4/5 (61 Downloads)

Synopsis Mesoscopic Theories of Heat Transport in Nanosystems by : Antonio Sellitto

This book presents generalized heat-conduction laws which, from a mesoscopic perspective, are relevant to new applications (especially in nanoscale heat transfer, nanoscale thermoelectric phenomena, and in diffusive-to-ballistic regime) and at the same time keep up with the pace of current microscopic research. The equations presented in the book are compatible with generalized formulations of nonequilibrium thermodynamics, going beyond the local-equilibrium. The book includes six main chapters, together with a preface and a final section devoted to the future perspectives, as well as an extensive bibliography.

Internal Variables in Thermoelasticity

Internal Variables in Thermoelasticity
Author :
Publisher : Springer
Total Pages : 222
Release :
ISBN-10 : 9783319569345
ISBN-13 : 3319569341
Rating : 4/5 (45 Downloads)

Synopsis Internal Variables in Thermoelasticity by : Arkadi Berezovski

This book describes an effective method for modeling advanced materials like polymers, composite materials and biomaterials, which are, as a rule, inhomogeneous. The thermoelastic theory with internal variables presented here provides a general framework for predicting a material’s reaction to external loading. The basic physical principles provide the primary theoretical information, including the evolution equations of the internal variables. The cornerstones of this framework are the material representation of continuum mechanics, a weak nonlocality, a non-zero extra entropy flux, and a consecutive employment of the dissipation inequality. Examples of thermoelastic phenomena are provided, accompanied by detailed procedures demonstrating how to simulate them.

Heat Conduction

Heat Conduction
Author :
Publisher : Springer Science & Business Media
Total Pages : 432
Release :
ISBN-10 : 9783642012679
ISBN-13 : 3642012671
Rating : 4/5 (79 Downloads)

Synopsis Heat Conduction by : Latif M. Jiji

This textbook presents the classical topics of conduction heat transfer and extends the coverage to include chapters on perturbation methods, heat transfer in living tissue, and microscale conduction. This makes the book unique among the many published textbook on conduction heat transfer. Other noteworthy features of the book are: The material is organized to provide students with the tools to model, analyze and solve a wide range of engineering applications involving conduction heat transfer. Mathematical techniques are presented in a clear and simplified fashion to be used as instruments in obtaining solutions. The simplicity of one-dimensional conduction is used to drill students in the role of boundary conditions and to explore a variety of physical conditions that are of practical interest. Examples are carefully selected to illustrate the application of principles and the construction of solutions. Students are trained to follow a systematic problem solving methodology with emphasis on thought process, logic, reasoning and verification. Solutions to all examples and end-of-chapter problems follow an orderly problems solving approach. Extensive training material is available on the web The author provides an extensive solution manual for verifiable course instructors on request. Please send your request to [email protected]

Extended Irreversible Thermodynamics

Extended Irreversible Thermodynamics
Author :
Publisher : Springer Verlag
Total Pages : 383
Release :
ISBN-10 : 3540607897
ISBN-13 : 9783540607892
Rating : 4/5 (97 Downloads)

Synopsis Extended Irreversible Thermodynamics by : David Jou

Problems after each chapter

Extended Thermodynamics

Extended Thermodynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 238
Release :
ISBN-10 : 9781468404470
ISBN-13 : 1468404474
Rating : 4/5 (70 Downloads)

Synopsis Extended Thermodynamics by : Ingo Müller

Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics through the exploitation of its predictions for measurements of light scattering and sound propagation.

Atlas of Nerve Conduction Studies and Electromyography

Atlas of Nerve Conduction Studies and Electromyography
Author :
Publisher : Oxford University Press
Total Pages : 326
Release :
ISBN-10 : 9780199754632
ISBN-13 : 0199754632
Rating : 4/5 (32 Downloads)

Synopsis Atlas of Nerve Conduction Studies and Electromyography by : A. Arturo Leis

Beautifully and lavishly illustrated, Atlas of Nerve Conduction Studies and Electromyography demystifies the major conditions affecting peripheral nerves and provides electrodiagnostic strategies for confirming suspected lesions of the peripheral nervous system. Building on the success of the landmark Atlas of Electromyography, this new text is divided into sections based on the major peripheral nerves. It contains detailed illustrations of each nerve along with a discussion of its anatomy, followed by a thorough outline of the clinical conditions and entrapment syndromes that affect the nerve, including a list of the etiologies, clinical features, and electrodiagnostic strategies used for each syndrome. Routine and special motor and sensory nerve conduction studies are shown in an anatomical illustration. In addition, each muscle supplied by the peripheral nerve is illustrated showing the root, plexus, and peripheral nerve supply to the muscle and is accompanied by a corresponding human photograph. Written text provides information about the nerve conduction studies, muscle origin, tendon insertion, voluntary activation maneuver, and the site of optimum needle insertion, which is identified in the figures by a black dot or a needle electrode. Atlas of Nerve Conduction Studies and Electromyography is the perfect anatomical guide for neurologists, specialists in physical medicine and rehabilitation, and electrodiagnostic medicine consultants, while also providing support for individuals in residency training programs, critical care medicine, neurological surgery, and family practice.