The Theory of Ultrafilters

The Theory of Ultrafilters
Author :
Publisher : Springer Science & Business Media
Total Pages : 494
Release :
ISBN-10 : 9783642657801
ISBN-13 : 364265780X
Rating : 4/5 (01 Downloads)

Synopsis The Theory of Ultrafilters by : W.W. Comfort

An ultrafilter is a truth-value assignment to the family of subsets of a set, and a method of convergence to infinity. From the first (logical) property arises its connection with two-valued logic and model theory; from the second (convergence) property arises its connection with topology and set theory. Both these descriptions of an ultrafilter are connected with compactness. The model-theoretic property finds its expression in the construction of the ultraproduct and the compactness type of theorem of Los (implying the compactness theorem of first-order logic); and the convergence property leads to the process of completion by the adjunction of an ideal element for every ultrafilter-i. e. , to the Stone-Cech com pactification process (implying the Tychonoff theorem on the compact ness of products). Since these are two ways of describing the same mathematical object, it is reasonable to expect that a study of ultrafilters from these points of view will yield results and methods which can be fruitfully crossbred. This unifying aspect is indeed what we have attempted to emphasize in the present work.

Ultrafilters across Mathematics

Ultrafilters across Mathematics
Author :
Publisher : American Mathematical Soc.
Total Pages : 214
Release :
ISBN-10 : 9780821848333
ISBN-13 : 082184833X
Rating : 4/5 (33 Downloads)

Synopsis Ultrafilters across Mathematics by : Vitaly Bergelson

Presents the state-of-the-art of applications in the whole spectrum of mathematics which are grounded on the use of ultrafilters and ultraproducts. It contains two general surveys on ultrafilters in set theory and on the ultraproduct construction, as well as papers that cover additive and combinatorial number theory, nonstandard methods and stochastic differential equations, measure theory, dynamics, Ramsey theory, algebra in the space of ultrafilters, and large cardinals.

Ultrafilters and Topologies on Groups

Ultrafilters and Topologies on Groups
Author :
Publisher : Walter de Gruyter
Total Pages : 229
Release :
ISBN-10 : 9783110204223
ISBN-13 : 3110204223
Rating : 4/5 (23 Downloads)

Synopsis Ultrafilters and Topologies on Groups by : Yevhen G. Zelenyuk

This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results about ultrafilters. The contents of the book fall naturally into three parts. The first, comprising Chapters 1 through 5, introduces to topological groups and ultrafilters insofar as the semigroup operation on ultrafilters is not required. Constructions of some important topological groups are given. In particular, that of an extremally disconnected topological group based on a Ramsey ultrafilter. Also one shows that every infinite group admits a nondiscrete zero-dimensional topology in which all translations and the inversion are continuous. In the second part, Chapters 6 through 9, the Stone-Cêch compactification βG of a discrete group G is studied. For this, a special technique based on the concepts of a local left group and a local homomorphism is developed. One proves that if G is a countable torsion free group, then βG contains no nontrivial finite groups. Also the ideal structure of βG is investigated. In particular, one shows that for every infinite Abelian group G, βG contains 22G minimal right ideals. In the third part, using the semigroup βG, almost maximal topological and left topological groups are constructed and their ultrafilter semigroups are examined. Projectives in the category of finite semigroups are characterized. Also one shows that every infinite Abelian group with finitely many elements of order 2 is absolutely ω-resolvable, and consequently, can be partitioned into ω subsets such that every coset modulo infinite subgroup meets each subset of the partition. The book concludes with a list of open problems in the field. Some familiarity with set theory, algebra and topology is presupposed. But in general, the book is almost self-contained. It is aimed at graduate students and researchers working in topological algebra and adjacent areas.

Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory

Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory
Author :
Publisher : Springer
Total Pages : 211
Release :
ISBN-10 : 9783030179564
ISBN-13 : 3030179567
Rating : 4/5 (64 Downloads)

Synopsis Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory by : Mauro Di Nasso

The goal of this monograph is to give an accessible introduction to nonstandard methods and their applications, with an emphasis on combinatorics and Ramsey theory. It includes both new nonstandard proofs of classical results and recent developments initially obtained in the nonstandard setting. This makes it the first combinatorics-focused account of nonstandard methods to be aimed at a general (graduate-level) mathematical audience. This book will provide a natural starting point for researchers interested in approaching the rapidly growing literature on combinatorial results obtained via nonstandard methods. The primary audience consists of graduate students and specialists in logic and combinatorics who wish to pursue research at the interface between these areas.

Algebra in the Stone-Cech Compactification

Algebra in the Stone-Cech Compactification
Author :
Publisher : Walter de Gruyter
Total Pages : 610
Release :
ISBN-10 : 9783110258356
ISBN-13 : 3110258358
Rating : 4/5 (56 Downloads)

Synopsis Algebra in the Stone-Cech Compactification by : Neil Hindman

This is the second revised and extended edition of the successful book on the algebraic structure of the Stone-Čech compactification of a discrete semigroup and its combinatorial applications, primarily in the field known as Ramsey Theory. There has been very active research in the subject dealt with by the book in the 12 years which is now included in this edition. This book is a self-contained exposition of the theory of compact right semigroups for discrete semigroups and the algebraic properties of these objects. The methods applied in the book constitute a mosaic of infinite combinatorics, algebra, and topology. The reader will find numerous combinatorial applications of the theory, including the central sets theorem, partition regularity of matrices, multidimensional Ramsey theory, and many more.

Combinatorial Set Theory

Combinatorial Set Theory
Author :
Publisher : Springer
Total Pages : 586
Release :
ISBN-10 : 9783319602318
ISBN-13 : 3319602314
Rating : 4/5 (18 Downloads)

Synopsis Combinatorial Set Theory by : Lorenz J. Halbeisen

This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.

An Introduction to Measure Theory

An Introduction to Measure Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 206
Release :
ISBN-10 : 9781470466404
ISBN-13 : 1470466406
Rating : 4/5 (04 Downloads)

Synopsis An Introduction to Measure Theory by : Terence Tao

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Handbook of the History of General Topology

Handbook of the History of General Topology
Author :
Publisher : Springer Science & Business Media
Total Pages : 418
Release :
ISBN-10 : 9789401704700
ISBN-13 : 9401704708
Rating : 4/5 (00 Downloads)

Synopsis Handbook of the History of General Topology by : C.E. Aull

This book is the first one of a work in several volumes, treating the history of the development of topology. The work contains papers which can be classified into 4 main areas. Thus there are contributions dealing with the life and work of individual topologists, with specific schools of topology, with research in topology in various countries, and with the development of topology in different periods. The work is not restricted to topology in the strictest sense but also deals with applications and generalisations in a broad sense. Thus it also treats, e.g., categorical topology, interactions with functional analysis, convergence spaces, and uniform spaces. Written by specialists in the field, it contains a wealth of information which is not available anywhere else.

The Axiom of Choice

The Axiom of Choice
Author :
Publisher : Courier Corporation
Total Pages : 226
Release :
ISBN-10 : 9780486466248
ISBN-13 : 0486466248
Rating : 4/5 (48 Downloads)

Synopsis The Axiom of Choice by : Thomas J. Jech

Comprehensive and self-contained text examines the axiom's relative strengths and consequences, including its consistency and independence, relation to permutation models, and examples and counterexamples of its use. 1973 edition.

Computability, Forcing and Descriptive Set Theory

Computability, Forcing and Descriptive Set Theory
Author :
Publisher : World Scientific Publishing Company
Total Pages : 200
Release :
ISBN-10 : 9813228229
ISBN-13 : 9789813228221
Rating : 4/5 (29 Downloads)

Synopsis Computability, Forcing and Descriptive Set Theory by : Douglas Cenzer

This volume presents some exciting new developments occurring on the interface between set theory and computability as well as their applications in algebra, analysis and topology. These include effective versions of Borel equivalence, Borel reducibility and Borel determinacy. It also covers algorithmic randomness and dimension, Ramsey sets and Ramsey spaces. Many of these topics are being discussed in the NSF-supported annual Southeastern Logic Symposium. Contents: Limits of the Kucerea-Gacs Coding Method (George Barmpalias and Andrew Lewis-Pye);Infinitary partition properties of sums of selective ultrafilters (Andreas Blass);Semiselective Coideals and Ramsey Sets (Carlos DiPrisco and Leonardo Pacheco);Survey on Topological Ramsey Spaces Dense in Forcings (Natasha Dobrinen);Higher Computability in the Reverse Mathematics of Borel Determinacy (Sherwood Hachtman);Computability and Definability (Valentina Harizanov);A Ramsey Space of Infinite Polyhedra and the Random Polyhedron (Jose G Mijares Palacios and Gabriel Padilla);Computable Reducibility for Cantor Space (Russell G Miller);Information vs Dimension - An Algorithmic Perspective (Jan Reimann); Readership: Graduate students and researchers interested in the interface between set theory and computability.