The Riemann-Hilbert Problem

The Riemann-Hilbert Problem
Author :
Publisher : Springer Science & Business Media
Total Pages : 202
Release :
ISBN-10 : 9783322929099
ISBN-13 : 3322929094
Rating : 4/5 (99 Downloads)

Synopsis The Riemann-Hilbert Problem by : D. V. Anosov

The Riemann-Hilbert problem (Hilbert's 21st problem) belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concerns the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this turned out to be a rare case of a wrong forecast made by him. In 1989 the second author (A. B.) discovered a counterexample, thus obtaining a negative solution to Hilbert's 21st problem in its original form.

Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions

Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions
Author :
Publisher : SIAM
Total Pages : 370
Release :
ISBN-10 : 9781611974195
ISBN-13 : 1611974194
Rating : 4/5 (95 Downloads)

Synopsis Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions by : Thomas Trogdon

Riemann?Hilbert problems are fundamental objects of study within complex analysis. Many problems in differential equations and integrable systems, probability and random matrix theory, and asymptotic analysis can be solved by reformulation as a Riemann?Hilbert problem.This book, the most comprehensive one to date on the applied and computational theory of Riemann?Hilbert problems, includes an introduction to computational complex analysis, an introduction to the applied theory of Riemann?Hilbert problems from an analytical and numerical perspective, and a discussion of applications to integrable systems, differential equations, and special function theory. It also includes six fundamental examples and five more sophisticated examples of the analytical and numerical Riemann?Hilbert method, each of mathematical or physical significance or both.?

Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach

Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach
Author :
Publisher : American Mathematical Soc.
Total Pages : 273
Release :
ISBN-10 : 9780821826959
ISBN-13 : 0821826956
Rating : 4/5 (59 Downloads)

Synopsis Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach by : Percy Deift

This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n times n matrices exhibit universal behavior as n > infinity? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems. Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.

Painleve Transcendents

Painleve Transcendents
Author :
Publisher : American Mathematical Soc.
Total Pages : 570
Release :
ISBN-10 : 9780821836514
ISBN-13 : 082183651X
Rating : 4/5 (14 Downloads)

Synopsis Painleve Transcendents by : A. S. Fokas

At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtainedanswering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutionsof the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points, play a crucial role in the applications of these functions. It is shown in this book, that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called theRiemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail theRiemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.

Special Functions 2000: Current Perspective and Future Directions

Special Functions 2000: Current Perspective and Future Directions
Author :
Publisher : Springer Science & Business Media
Total Pages : 548
Release :
ISBN-10 : 0792371194
ISBN-13 : 9780792371199
Rating : 4/5 (94 Downloads)

Synopsis Special Functions 2000: Current Perspective and Future Directions by : Joaquin Bustoz

The Advanced Study Institute brought together researchers in the main areas of special functions and applications to present recent developments in the theory, review the accomplishments of past decades, and chart directions for future research. Some of the topics covered are orthogonal polynomials and special functions in one and several variables, asymptotic, continued fractions, applications to number theory, combinatorics and mathematical physics, integrable systems, harmonic analysis and quantum groups, Painleve classification.

Minimal Surfaces from a Complex Analytic Viewpoint

Minimal Surfaces from a Complex Analytic Viewpoint
Author :
Publisher : Springer Nature
Total Pages : 430
Release :
ISBN-10 : 9783030690564
ISBN-13 : 3030690563
Rating : 4/5 (64 Downloads)

Synopsis Minimal Surfaces from a Complex Analytic Viewpoint by : Antonio Alarcón

This monograph offers the first systematic treatment of the theory of minimal surfaces in Euclidean spaces by complex analytic methods, many of which have been developed in recent decades as part of the theory of Oka manifolds (the h-principle in complex analysis). It places particular emphasis on the study of the global theory of minimal surfaces with a given complex structure. Advanced methods of holomorphic approximation, interpolation, and homotopy classification of manifold-valued maps, along with elements of convex integration theory, are implemented for the first time in the theory of minimal surfaces. The text also presents newly developed methods for constructing minimal surfaces in minimally convex domains of Rn, based on the Riemann–Hilbert boundary value problem adapted to minimal surfaces and holomorphic null curves. These methods also provide major advances in the classical Calabi–Yau problem, yielding in particular minimal surfaces with the conformal structure of any given bordered Riemann surface. Offering new directions in the field and several challenging open problems, the primary audience of the book are researchers (including postdocs and PhD students) in differential geometry and complex analysis. Although not primarily intended as a textbook, two introductory chapters surveying background material and the classical theory of minimal surfaces also make it suitable for preparing Masters or PhD level courses.

The 21st Hilbert Problem for Linear Fuchsian Systems

The 21st Hilbert Problem for Linear Fuchsian Systems
Author :
Publisher : American Mathematical Soc.
Total Pages : 158
Release :
ISBN-10 : 0821804669
ISBN-13 : 9780821804667
Rating : 4/5 (69 Downloads)

Synopsis The 21st Hilbert Problem for Linear Fuchsian Systems by : A. A. Bolibrukh

Bolibrukh presents the negative solution of Hilbert's twenty-first problem for linear Fuchsian systems of differential equations. Methods developed by Bolibrukh in solving this problem are then applied to the study of scalar Fuchsian equations and systems with regular singular points on the Riemmann sphere.

Stationary Diffraction by Wedges

Stationary Diffraction by Wedges
Author :
Publisher : Springer Nature
Total Pages : 157
Release :
ISBN-10 : 9783030266998
ISBN-13 : 3030266990
Rating : 4/5 (98 Downloads)

Synopsis Stationary Diffraction by Wedges by : Alexander Komech

This book presents a new and original method for the solution of boundary value problems in angles for second-order elliptic equations with constant coefficients and arbitrary boundary operators. This method turns out to be applicable to many different areas of mathematical physics, in particular to diffraction problems in angles and to the study of trapped modes on a sloping beach. Giving the reader the opportunity to master the techniques of the modern theory of diffraction, the book introduces methods of distributions, complex Fourier transforms, pseudo-differential operators, Riemann surfaces, automorphic functions, and the Riemann–Hilbert problem. The book will be useful for students, postgraduates and specialists interested in the application of modern mathematics to wave propagation and diffraction problems.

Differential Galois Theory through Riemann-Hilbert Correspondence

Differential Galois Theory through Riemann-Hilbert Correspondence
Author :
Publisher : American Mathematical Soc.
Total Pages : 303
Release :
ISBN-10 : 9781470430955
ISBN-13 : 1470430959
Rating : 4/5 (55 Downloads)

Synopsis Differential Galois Theory through Riemann-Hilbert Correspondence by : Jacques Sauloy

Differential Galois theory is an important, fast developing area which appears more and more in graduate courses since it mixes fundamental objects from many different areas of mathematics in a stimulating context. For a long time, the dominant approach, usually called Picard-Vessiot Theory, was purely algebraic. This approach has been extensively developed and is well covered in the literature. An alternative approach consists in tagging algebraic objects with transcendental information which enriches the understanding and brings not only new points of view but also new solutions. It is very powerful and can be applied in situations where the Picard-Vessiot approach is not easily extended. This book offers a hands-on transcendental approach to differential Galois theory, based on the Riemann-Hilbert correspondence. Along the way, it provides a smooth, down-to-earth introduction to algebraic geometry, category theory and tannakian duality. Since the book studies only complex analytic linear differential equations, the main prerequisites are complex function theory, linear algebra, and an elementary knowledge of groups and of polynomials in many variables. A large variety of examples, exercises, and theoretical constructions, often via explicit computations, offers first-year graduate students an accessible entry into this exciting area.

Prime Obsession

Prime Obsession
Author :
Publisher : Joseph Henry Press
Total Pages : 447
Release :
ISBN-10 : 9780309141253
ISBN-13 : 0309141257
Rating : 4/5 (53 Downloads)

Synopsis Prime Obsession by : John Derbyshire

In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.