Many-body Theory Exposed! Propagator Description Of Quantum Mechanics In Many-body Systems (2nd Edition)

Many-body Theory Exposed! Propagator Description Of Quantum Mechanics In Many-body Systems (2nd Edition)
Author :
Publisher : World Scientific Publishing Company
Total Pages : 851
Release :
ISBN-10 : 9789813101319
ISBN-13 : 9813101318
Rating : 4/5 (19 Downloads)

Synopsis Many-body Theory Exposed! Propagator Description Of Quantum Mechanics In Many-body Systems (2nd Edition) by : Willem Hendrik Dickhoff

This comprehensive textbook on the quantum mechanics of identical particles includes a wealth of valuable experimental data, in particular recent results from direct knockout reactions directly related to the single-particle propagator in many-body theory. The comparison with data is incorporated from the start, making the abstract concept of propagators vivid and accessible. Results of numerical calculations using propagators or Green's functions are also presented. The material has been thoroughly tested in the classroom and the introductory chapters provide a seamless connection with a one-year graduate course in quantum mechanics. While the majority of books on many-body theory deal with the subject from the viewpoint of condensed matter physics, this book emphasizes finite systems as well and should be of considerable interest to researchers in nuclear, atomic, and molecular physics. A unified treatment of many different many-body systems is presented using the approach of self-consistent Green's functions. The second edition contains an extensive presentation of finite temperature propagators and covers the technique to extract the self-energy from experimental data as developed in the dispersive optical model.The coverage proceeds systematically from elementary concepts, such as second quantization and mean-field properties, to a more advanced but self-contained presentation of the physics of atoms, molecules, nuclei, nuclear and neutron matter, electron gas, quantum liquids, atomic Bose-Einstein and fermion condensates, and pairing correlations in finite and infinite systems, including finite temperature.

The Quantum Mechanics of Many-Body Systems

The Quantum Mechanics of Many-Body Systems
Author :
Publisher : Courier Corporation
Total Pages : 258
Release :
ISBN-10 : 9780486493572
ISBN-13 : 0486493571
Rating : 4/5 (72 Downloads)

Synopsis The Quantum Mechanics of Many-Body Systems by : D.J. Thouless

"Unabridged republication of the second edition of the work, originally published in the Pure and applied physics series by Academic Press, Inc., New York, in 1972"--Title page verso.

Quantum Theory of Many-Body Systems

Quantum Theory of Many-Body Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 238
Release :
ISBN-10 : 9781461205951
ISBN-13 : 1461205956
Rating : 4/5 (51 Downloads)

Synopsis Quantum Theory of Many-Body Systems by : Alexandre Zagoskin

Intended for graduates in physics and related fields, this is a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory, and the Matsubara, Keldysh, and Nambu-Gorov formalisms. The aim is not to be exhaustive, but to present just enough detail to enable students to follow the current research literature or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout the volume, and which therefore provides an ideal testing ground for many-body theories. '

Quantum Field Theory of Many-Body Systems

Quantum Field Theory of Many-Body Systems
Author :
Publisher : OUP Oxford
Total Pages : 520
Release :
ISBN-10 : 9780191523960
ISBN-13 : 0191523968
Rating : 4/5 (60 Downloads)

Synopsis Quantum Field Theory of Many-Body Systems by : Xiao-Gang Wen

For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.

Physics and Mathematics of Quantum Many-Body Systems

Physics and Mathematics of Quantum Many-Body Systems
Author :
Publisher : Springer Nature
Total Pages : 534
Release :
ISBN-10 : 9783030412654
ISBN-13 : 3030412652
Rating : 4/5 (54 Downloads)

Synopsis Physics and Mathematics of Quantum Many-Body Systems by : Hal Tasaki

This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.

Many-Body Quantum Theory in Condensed Matter Physics

Many-Body Quantum Theory in Condensed Matter Physics
Author :
Publisher : Oxford University Press
Total Pages : 458
Release :
ISBN-10 : 9780198566335
ISBN-13 : 0198566336
Rating : 4/5 (35 Downloads)

Synopsis Many-Body Quantum Theory in Condensed Matter Physics by : Henrik Bruus

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.

Introduction to Many-Body Physics

Introduction to Many-Body Physics
Author :
Publisher : Cambridge University Press
Total Pages : 815
Release :
ISBN-10 : 9781316432020
ISBN-13 : 1316432025
Rating : 4/5 (20 Downloads)

Synopsis Introduction to Many-Body Physics by : Piers Coleman

A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.

The Many-Body Problem in Quantum Mechanics

The Many-Body Problem in Quantum Mechanics
Author :
Publisher : Courier Corporation
Total Pages : 482
Release :
ISBN-10 : 9780486687544
ISBN-13 : 0486687546
Rating : 4/5 (44 Downloads)

Synopsis The Many-Body Problem in Quantum Mechanics by : Norman Henry March

Single-volume account of methods used in dealing with the many-body problem and the resulting physics. Single-particle approximations, second quantization, many-body perturbation theory, Fermi fluids, superconductivity, many-boson systems, more. Each chapter contains well-chosen problems. Only prerequisite is basic understanding of elementary quantum mechanics. 1967 edition.

Nonequilibrium Many-Body Theory of Quantum Systems

Nonequilibrium Many-Body Theory of Quantum Systems
Author :
Publisher : Cambridge University Press
Total Pages : 619
Release :
ISBN-10 : 9781107354579
ISBN-13 : 1107354579
Rating : 4/5 (79 Downloads)

Synopsis Nonequilibrium Many-Body Theory of Quantum Systems by : Gianluca Stefanucci

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.

Quantum Many-Body Physics in Open Systems: Measurement and Strong Correlations

Quantum Many-Body Physics in Open Systems: Measurement and Strong Correlations
Author :
Publisher : Springer Nature
Total Pages : 243
Release :
ISBN-10 : 9789811525803
ISBN-13 : 9811525803
Rating : 4/5 (03 Downloads)

Synopsis Quantum Many-Body Physics in Open Systems: Measurement and Strong Correlations by : Yuto Ashida

This book studies the fundamental aspects of many-body physics in quantum systems open to an external world. Recent remarkable developments in the observation and manipulation of quantum matter at the single-quantum level point to a new research area of open many-body systems, where interactions with an external observer and the environment play a major role. The first part of the book elucidates the influence of measurement backaction from an external observer, revealing new types of quantum critical phenomena and out-of-equilibrium dynamics beyond the conventional paradigm of closed systems. In turn, the second part develops a powerful theoretical approach to study the in- and out-of-equilibrium physics of an open quantum system strongly correlated with an external environment, where the entanglement between the system and the environment plays an essential role. The results obtained here offer essential theoretical results for understanding the many-body physics of quantum systems open to an external world, and can be applied to experimental systems in atomic, molecular and optical physics, quantum information science and condensed matter physics.