The Nature Of Statistical Learning Theory
Download The Nature Of Statistical Learning Theory full books in PDF, epub, and Kindle. Read online free The Nature Of Statistical Learning Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Vladimir Vapnik |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 324 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9781475732641 |
ISBN-13 |
: 1475732643 |
Rating |
: 4/5 (41 Downloads) |
Synopsis The Nature of Statistical Learning Theory by : Vladimir Vapnik
The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.
Author |
: Gareth James |
Publisher |
: Springer Nature |
Total Pages |
: 617 |
Release |
: 2023-08-01 |
ISBN-10 |
: 9783031387470 |
ISBN-13 |
: 3031387473 |
Rating |
: 4/5 (70 Downloads) |
Synopsis An Introduction to Statistical Learning by : Gareth James
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Author |
: Gilbert Harman |
Publisher |
: MIT Press |
Total Pages |
: 119 |
Release |
: 2012-01-13 |
ISBN-10 |
: 9780262263153 |
ISBN-13 |
: 0262263157 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Reliable Reasoning by : Gilbert Harman
The implications for philosophy and cognitive science of developments in statistical learning theory. In Reliable Reasoning, Gilbert Harman and Sanjeev Kulkarni—a philosopher and an engineer—argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors—a central topic in SLT. After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT.
Author |
: Vladimir Naumovich Vapnik |
Publisher |
: Wiley-Interscience |
Total Pages |
: 778 |
Release |
: 1998-09-30 |
ISBN-10 |
: UOM:39076002704257 |
ISBN-13 |
: |
Rating |
: 4/5 (57 Downloads) |
Synopsis Statistical Learning Theory by : Vladimir Naumovich Vapnik
A comprehensive look at learning and generalization theory. The statistical theory of learning and generalization concerns the problem of choosing desired functions on the basis of empirical data. Highly applicable to a variety of computer science and robotics fields, this book offers lucid coverage of the theory as a whole. Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.
Author |
: Trevor Hastie |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 545 |
Release |
: 2013-11-11 |
ISBN-10 |
: 9780387216065 |
ISBN-13 |
: 0387216065 |
Rating |
: 4/5 (65 Downloads) |
Synopsis The Elements of Statistical Learning by : Trevor Hastie
During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.
Author |
: RODRIGO F MELLO |
Publisher |
: Springer |
Total Pages |
: 373 |
Release |
: 2018-08-01 |
ISBN-10 |
: 9783319949895 |
ISBN-13 |
: 3319949896 |
Rating |
: 4/5 (95 Downloads) |
Synopsis Machine Learning by : RODRIGO F MELLO
This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible. It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory. Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines. From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results.
Author |
: Vladimir Vapnik |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 340 |
Release |
: 1999-11-19 |
ISBN-10 |
: 0387987800 |
ISBN-13 |
: 9780387987804 |
Rating |
: 4/5 (00 Downloads) |
Synopsis The Nature of Statistical Learning Theory by : Vladimir Vapnik
The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.
Author |
: Vladimir Cherkassky |
Publisher |
: John Wiley & Sons |
Total Pages |
: 560 |
Release |
: 2007-09-10 |
ISBN-10 |
: 0470140518 |
ISBN-13 |
: 9780470140512 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Learning from Data by : Vladimir Cherkassky
An interdisciplinary framework for learning methodologies—covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied—showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.
Author |
: Frank Emmert-Streib |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 443 |
Release |
: 2009 |
ISBN-10 |
: 9780387848150 |
ISBN-13 |
: 0387848150 |
Rating |
: 4/5 (50 Downloads) |
Synopsis Information Theory and Statistical Learning by : Frank Emmert-Streib
This interdisciplinary text offers theoretical and practical results of information theoretic methods used in statistical learning. It presents a comprehensive overview of the many different methods that have been developed in numerous contexts.
Author |
: Ke-Lin Du |
Publisher |
: Springer Nature |
Total Pages |
: 996 |
Release |
: 2019-09-12 |
ISBN-10 |
: 9781447174523 |
ISBN-13 |
: 1447174526 |
Rating |
: 4/5 (23 Downloads) |
Synopsis Neural Networks and Statistical Learning by : Ke-Lin Du
This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.