The Linearized Theory of Elasticity

The Linearized Theory of Elasticity
Author :
Publisher : Springer Science & Business Media
Total Pages : 588
Release :
ISBN-10 : 0817641173
ISBN-13 : 9780817641177
Rating : 4/5 (73 Downloads)

Synopsis The Linearized Theory of Elasticity by : William S. Slaughter

The mathematical framework behind the theory is developed in detail, with the assumptions behind the eventual linearization made clear, so that the reader will be adequately prepared for further studies in continuum mechanics, nonlinear elasticity, inelasticity, fracture mechanics and/or finite elements. Prior to linearization, configurations and general measure of strain and stress are discussed. A modern treatment of the theory of tensors and tensor calculus is used. General curvilinear coordinates are described in an appendix.

The Linearized Theory of Elasticity

The Linearized Theory of Elasticity
Author :
Publisher : Springer Science & Business Media
Total Pages : 557
Release :
ISBN-10 : 9781461200932
ISBN-13 : 1461200938
Rating : 4/5 (32 Downloads)

Synopsis The Linearized Theory of Elasticity by : William S. Slaughter

This book is derived from notes used in teaching a first-year graduate-level course in elasticity in the Department of Mechanical Engineering at the University of Pittsburgh. This is a modern treatment of the linearized theory of elasticity, which is presented as a specialization of the general theory of continuum mechanics. It includes a comprehensive introduction to tensor analysis, a rigorous development of the governing field equations with an emphasis on recognizing the assumptions and approximations in herent in the linearized theory, specification of boundary conditions, and a survey of solution methods for important classes of problems. Two- and three-dimensional problems, torsion of noncircular cylinders, variational methods, and complex variable methods are covered. This book is intended as the text for a first-year graduate course in me chanical or civil engineering. Sufficient depth is provided such that the text can be used without a prerequisite course in continuum mechanics, and the material is presented in such a way as to prepare students for subsequent courses in nonlinear elasticity, inelasticity, and fracture mechanics. Alter natively, for a course that is preceded by a course in continuum mechanics, there is enough additional content for a full semester of linearized elasticity.

The Linearized Theory of Elasticity

The Linearized Theory of Elasticity
Author :
Publisher : Springer Science & Business Media
Total Pages : 584
Release :
ISBN-10 : STANFORD:36105110287195
ISBN-13 :
Rating : 4/5 (95 Downloads)

Synopsis The Linearized Theory of Elasticity by : William S. Slaughter

The mathematical framework behind the theory is developed in detail, with the assumptions behind the eventual linearization made clear, so that the reader will be adequately prepared for further studies in continuum mechanics, nonlinear elasticity, inelasticity, fracture mechanics and/or finite elements. Prior to linearization, configurations and general measure of strain and stress are discussed. A modern treatment of the theory of tensors and tensor calculus is used. General curvilinear coordinates are described in an appendix.

Mathematical Methods in Continuum Mechanics of Solids

Mathematical Methods in Continuum Mechanics of Solids
Author :
Publisher : Springer
Total Pages : 624
Release :
ISBN-10 : 9783030020651
ISBN-13 : 3030020657
Rating : 4/5 (51 Downloads)

Synopsis Mathematical Methods in Continuum Mechanics of Solids by : Martin Kružík

This book primarily focuses on rigorous mathematical formulation and treatment of static problems arising in continuum mechanics of solids at large or small strains, as well as their various evolutionary variants, including thermodynamics. As such, the theory of boundary- or initial-boundary-value problems for linear or quasilinear elliptic, parabolic or hyperbolic partial differential equations is the main underlying mathematical tool, along with the calculus of variations. Modern concepts of these disciplines as weak solutions, polyconvexity, quasiconvexity, nonsimple materials, materials with various rheologies or with internal variables are exploited. This book is accompanied by exercises with solutions, and appendices briefly presenting the basic mathematical concepts and results needed. It serves as an advanced resource and introductory scientific monograph for undergraduate or PhD students in programs such as mathematical modeling, applied mathematics, computational continuum physics and engineering, as well as for professionals working in these fields.

Mathematical Theory of Elastic Structures

Mathematical Theory of Elastic Structures
Author :
Publisher : Springer Science & Business Media
Total Pages : 407
Release :
ISBN-10 : 9783662032862
ISBN-13 : 3662032864
Rating : 4/5 (62 Downloads)

Synopsis Mathematical Theory of Elastic Structures by : Kang Feng

Elasticity theory is a classical discipline. The mathematical theory of elasticity in mechanics, especially the linearized theory, is quite mature, and is one of the foundations of several engineering sciences. In the last twenty years, there has been significant progress in several areas closely related to this classical field, this applies in particular to the following two areas. First, progress has been made in numerical methods, especially the development of the finite element method. The finite element method, which was independently created and developed in different ways by sci entists both in China and in the West, is a kind of systematic and modern numerical method for solving partial differential equations, especially el liptic equations. Experience has shown that the finite element method is efficient enough to solve problems in an extremely wide range of applica tions of elastic mechanics. In particular, the finite element method is very suitable for highly complicated problems. One of the authors (Feng) of this book had the good fortune to participate in the work of creating and establishing the theoretical basis of the finite element method. He thought in the early sixties that the method could be used to solve computational problems of solid mechanics by computers. Later practice justified and still continues to justify this point of view. The authors believe that it is now time to include the finite element method as an important part of the content of a textbook of modern elastic mechanics.

Introduction to Mathematical Elasticity

Introduction to Mathematical Elasticity
Author :
Publisher : World Scientific
Total Pages : 317
Release :
ISBN-10 : 9789814273725
ISBN-13 : 9814273724
Rating : 4/5 (25 Downloads)

Synopsis Introduction to Mathematical Elasticity by : L. P. Lebedev

This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability.Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems.

Theory of Elasticity

Theory of Elasticity
Author :
Publisher : Springer Science & Business Media
Total Pages : 1036
Release :
ISBN-10 : 9783540264552
ISBN-13 : 3540264558
Rating : 4/5 (52 Downloads)

Synopsis Theory of Elasticity by : A.I. Lurie

The classical theory of elasticity maintains a place of honour in the science ofthe behaviour ofsolids. Its basic definitions are general for all branches of this science, whilst the methods forstating and solving these problems serve as examples of its application. The theories of plasticity, creep, viscoelas ticity, and failure of solids do not adequately encompass the significance of the methods of the theory of elasticity for substantiating approaches for the calculation of stresses in structures and machines. These approaches constitute essential contributions in the sciences of material resistance and structural mechanics. The first two chapters form Part I of this book and are devoted to the basic definitions ofcontinuum mechanics; namely stress tensors (Chapter 1) and strain tensors (Chapter 2). The necessity to distinguish between initial and actual states in the nonlinear theory does not allow one to be content with considering a single strain measure. For this reason, it is expedient to introduce more rigorous tensors to describe the stress-strain state. These are considered in Section 1.3 for which the study of Sections 2.3-2.5 should precede. The mastering of the content of these sections can be postponed until the nonlinear theory is studied in Chapters 8 and 9.

Elasticity

Elasticity
Author :
Publisher : Elsevier
Total Pages : 474
Release :
ISBN-10 : 9780080477473
ISBN-13 : 008047747X
Rating : 4/5 (73 Downloads)

Synopsis Elasticity by : Martin H. Sadd

Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of

Wave Propagation in Elastic Solids

Wave Propagation in Elastic Solids
Author :
Publisher : Elsevier
Total Pages : 440
Release :
ISBN-10 : 9781483163734
ISBN-13 : 1483163733
Rating : 4/5 (34 Downloads)

Synopsis Wave Propagation in Elastic Solids by : J. D. Achenbach

Wave Propagation in Elastic Solids focuses on linearized theory and perfectly elastic media. This book discusses the one-dimensional motion of an elastic continuum; linearized theory of elasticity; elastodynamic theory; and elastic waves in an unbounded medium. The plane harmonic waves in elastic half-spaces; harmonic waves in waveguides; and forced motions of a half-space are also elaborated. This text likewise covers the transient waves in layers and rods; diffraction of waves by a slit; and thermal and viscoelastic effects, and effects of anisotropy and nonlinearity. Other topics include the summary of equations in rectangular coordinates, time-harmonic plane waves, approximate theories for rods, and transient in-plane motion of a layer. This publication is a good source for students and researchers conducting work on the wave propagation in elastic solids.