Generalized Multipole Techniques for Electromagnetic and Light Scattering

Generalized Multipole Techniques for Electromagnetic and Light Scattering
Author :
Publisher : Elsevier
Total Pages : 273
Release :
ISBN-10 : 9780080532370
ISBN-13 : 0080532373
Rating : 4/5 (70 Downloads)

Synopsis Generalized Multipole Techniques for Electromagnetic and Light Scattering by : T. Wriedt

This book is an edited volume of nine papers covering the different variants of the generalized multipole techniques (GMT). The papers were presented at the recent 3rd Workshop on Electromagnetics and Light Scattering - Theory and Applications, which focused on current GMT methods. These include the multiple multipole method (MMP), the discrete sources method (DSM), Yasuura's method, method of auxiliary sources and null-field method with discrete sources. Each paper presents a full theoretical description as well as some applications of the method in electrical engineering and optics. It also includes both 2D and 3D methods and other applications developed in the former Soviet Union and Japan.

The Generalized Multipole Technique for Computational Electromagnetics

The Generalized Multipole Technique for Computational Electromagnetics
Author :
Publisher : Artech House Publishers
Total Pages : 328
Release :
ISBN-10 : STANFORD:36105030066356
ISBN-13 :
Rating : 4/5 (56 Downloads)

Synopsis The Generalized Multipole Technique for Computational Electromagnetics by : Christian Hafner

Beginning with a detailed comparison of traditional methods of EM field analysis, this text leads up to a step-by-step explication of the Generalized Multiple Technique (GMT).

The Generalized Multipole Technique for Light Scattering

The Generalized Multipole Technique for Light Scattering
Author :
Publisher : Springer
Total Pages : 258
Release :
ISBN-10 : 9783319748900
ISBN-13 : 3319748904
Rating : 4/5 (00 Downloads)

Synopsis The Generalized Multipole Technique for Light Scattering by : Thomas Wriedt

This book presents the Generalized Multipole Technique as a fast and powerful theoretical and computation tool to simulate light scattering by nonspherical particles. It also demonstrates the considerable potential of the method. In recent years, the concept has been applied in new fields, such as simulation of electron energy loss spectroscopy and has been used to extend other methods, like the null-field method, making it more widely applicable. The authors discuss particular implementations of the GMT methods, such as the Discrete Sources Method (DSM), Multiple Multipole Program (MMP), the Method of Auxiliary Sources (MAS), the Filamentary Current Method (FCM), the Method of Fictitious Sources (MFS) and the Null-Field Method with Discrete Sources (NFM-DS). The Generalized Multipole Technique is a surface-based method to find the solution of a boundary-value problem for a given differential equation by expanding the fields in terms of fundamental or other singular solutions of this equation. The amplitudes of these fundamental solutions are determined from the boundary condition at the particle surface. Electromagnetic and light scattering by particles or systems of particles has been the subject of intense research in various scientific and engineering fields, including astronomy, optics, meteorology, remote sensing, optical particle sizing and electromagnetics, which has led to the development of a large number of modelling methods based on the Generalized Multipole Technique for quantitative evaluation of electromagnetic scattering by particles of various shapes and compositions. The book describes these methods in detail.

Computational Electromagnetics with MATLAB, Fourth Edition

Computational Electromagnetics with MATLAB, Fourth Edition
Author :
Publisher : CRC Press
Total Pages : 709
Release :
ISBN-10 : 9781351365093
ISBN-13 : 1351365096
Rating : 4/5 (93 Downloads)

Synopsis Computational Electromagnetics with MATLAB, Fourth Edition by : Matthew N.O. Sadiku

This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.

Circuit Oriented Electromagnetic Modeling Using the PEEC Techniques

Circuit Oriented Electromagnetic Modeling Using the PEEC Techniques
Author :
Publisher : John Wiley & Sons
Total Pages : 609
Release :
ISBN-10 : 9781119078401
ISBN-13 : 1119078407
Rating : 4/5 (01 Downloads)

Synopsis Circuit Oriented Electromagnetic Modeling Using the PEEC Techniques by : Albert Ruehli

Bridges the gap between electromagnetics and circuits by addressing electrometric modeling (EM) using the Partial Element Equivalent Circuit (PEEC) method This book provides intuitive solutions to electromagnetic problems by using the Partial Element Equivalent Circuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non-orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, incident and radiate field models, and scattering PEEC models. The book concludes by considering issues like stability and passivity, and includes five appendices some with formulas for partial elements. Leads readers to the solution of a multitude of practical problems in the areas of signal and power integrity and electromagnetic interference Contains fundamentals, applications, and examples of the PEEC method Includes detailed mathematical derivations Circuit Oriented Electromagnetic Modeling Using the PEEC Techniques is a reference for students, researchers, and developers who work on the physical layer modeling of IC interconnects and Packaging, PCBs, and high speed links.

The Method of Moments in Electromagnetics

The Method of Moments in Electromagnetics
Author :
Publisher : CRC Press
Total Pages : 510
Release :
ISBN-10 : 9781000412482
ISBN-13 : 1000412482
Rating : 4/5 (82 Downloads)

Synopsis The Method of Moments in Electromagnetics by : Walton C. Gibson

The Method of Moments in Electromagnetics, Third Edition details the numerical solution of electromagnetic integral equations via the Method of Moments (MoM). Previous editions focused on the solution of radiation and scattering problems involving conducting, dielectric, and composite objects. This new edition adds a significant amount of material on new, state-of-the art compressive techniques. Included are new chapters on the Adaptive Cross Approximation (ACA) and Multi-Level Adaptive Cross Approximation (MLACA), advanced algorithms that permit a direct solution of the MoM linear system via LU decomposition in compressed form. Significant attention is paid to parallel software implementation of these methods on traditional central processing units (CPUs) as well as new, high performance graphics processing units (GPUs). Existing material on the Fast Multipole Method (FMM) and Multi-Level Fast Multipole Algorithm (MLFMA) is also updated, blending in elements of the ACA algorithm to further reduce their memory demands. The Method of Moments in Electromagnetics is intended for students, researchers, and industry experts working in the area of computational electromagnetics (CEM) and the MoM. Providing a bridge between theory and software implementation, the book incorporates significant background material, while presenting practical, nuts-and-bolts implementation details. It first derives a generalized set of surface integral equations used to treat electromagnetic radiation and scattering problems, for objects comprising conducting and dielectric regions. Subsequent chapters apply these integral equations for progressively more difficult problems such as thin wires, bodies of revolution, and two- and three-dimensional bodies. Radiation and scattering problems of many different types are considered, with numerical results compared against analytical theory as well as measurements.

Theorem Proving in Higher Order Logics

Theorem Proving in Higher Order Logics
Author :
Publisher : Springer
Total Pages : 517
Release :
ISBN-10 : 9783642033599
ISBN-13 : 3642033598
Rating : 4/5 (99 Downloads)

Synopsis Theorem Proving in Higher Order Logics by : Stefan Berghofer

This book constitutes the refereed proceedings of the 22nd International Conference on Theorem Proving in Higher Order Logics, TPHOLs 200, held in Munich, Germany, in August 2009. The 26 revised full papers presented together with 1 proof pearl, 4 tool presentations, and 3 invited papers were carefully reviewed and selected from 55 submissions. The papers cover all aspects of theorem proving in higher order logics as well as related topics in theorem proving and verification such as formal semantics of specification, modeling, and programming languages, specification and verification of hardware and software, formalization of mathematical theories, advances in theorem prover technology, as well as industrial application of theorem provers.

Ultrafast Laser Nanostructuring

Ultrafast Laser Nanostructuring
Author :
Publisher : Springer Nature
Total Pages : 1243
Release :
ISBN-10 : 9783031147524
ISBN-13 : 3031147529
Rating : 4/5 (24 Downloads)

Synopsis Ultrafast Laser Nanostructuring by : Razvan Stoian

Bringing together contributions from leading experts in the field, this book reviews laser processing concepts that allow the structuring of material beyond optical limits, and methods that facilitate direct observation of the underlying mechanisms by exploring direct structuring and self-organization phenomena. The capacity to nanostructure material using ultrafast lasers lays the groundwork for the next generation of flexible and precise material processing tools. Rapid access to scales of 100 nm and below in two and three dimensions becomes a factor of paramount importance to engineer materials and to design innovative functions. To reflect the dynamic nature of the field at all levels from basic science to applications, the book is divided into three parts, Fundamental Processes, Concepts of Extreme Nanostructuring, and Applications, each of which is comprehensively covered. This book will be a useful resource for graduate students and researchers in laser processing, materials engineering, and nanoscience.

Optical Metamaterials: Qualitative Models

Optical Metamaterials: Qualitative Models
Author :
Publisher : Springer
Total Pages : 324
Release :
ISBN-10 : 9783319775203
ISBN-13 : 3319775200
Rating : 4/5 (03 Downloads)

Synopsis Optical Metamaterials: Qualitative Models by : Arkadi Chipouline

This textbook bridges the gap between university courses on electrodynamics and the knowledge needed to successfully address the problem of electrodynamics of metamaterials. It appeals to both experimentalists and theoreticians who are interested in the physical basics of metamaterials and plasmonics. Focusing on qualitative fundamental treatment as opposed to quantitative numerical treatment, it covers the phenomena of artificial magnetization at high frequencies, and discusses homogenization procedures and the basics of quantum dynamics in detail. By considering different phenomena it creates a self-consistent qualitative picture to explain most observable phenomena. This allows readers to develop a better understanding of the concepts, and helps to create a conceptual approach, which is especially important in educational contexts. This clearly written book includes problems and solutions for each chapter, which can be used for seminars and homework, as well as qualitative models that are helpful to students.