The Frailty Model
Download The Frailty Model full books in PDF, epub, and Kindle. Read online free The Frailty Model ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Luc Duchateau |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 329 |
Release |
: 2007-10-23 |
ISBN-10 |
: 9780387728353 |
ISBN-13 |
: 038772835X |
Rating |
: 4/5 (53 Downloads) |
Synopsis The Frailty Model by : Luc Duchateau
Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.
Author |
: Andreas Wienke |
Publisher |
: CRC Press |
Total Pages |
: 324 |
Release |
: 2010-07-26 |
ISBN-10 |
: 1420073915 |
ISBN-13 |
: 9781420073911 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Frailty Models in Survival Analysis by : Andreas Wienke
The concept of frailty offers a convenient way to introduce unobserved heterogeneity and associations into models for survival data. In its simplest form, frailty is an unobserved random proportionality factor that modifies the hazard function of an individual or a group of related individuals. Frailty Models in Survival Analysis presents a comprehensive overview of the fundamental approaches in the area of frailty models. The book extensively explores how univariate frailty models can represent unobserved heterogeneity. It also emphasizes correlated frailty models as extensions of univariate and shared frailty models. The author analyzes similarities and differences between frailty and copula models; discusses problems related to frailty models, such as tests for homogeneity; and describes parametric and semiparametric models using both frequentist and Bayesian approaches. He also shows how to apply the models to real data using the statistical packages of R, SAS, and Stata. The appendix provides the technical mathematical results used throughout. Written in nontechnical terms accessible to nonspecialists, this book explains the basic ideas in frailty modeling and statistical techniques, with a focus on real-world data application and interpretation of the results. By applying several models to the same data, it allows for the comparison of their advantages and limitations under varying model assumptions. The book also employs simulations to analyze the finite sample size performance of the models.
Author |
: David D. Hanagal |
Publisher |
: Springer Nature |
Total Pages |
: 307 |
Release |
: 2019-11-16 |
ISBN-10 |
: 9789811511813 |
ISBN-13 |
: 9811511810 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Modeling Survival Data Using Frailty Models by : David D. Hanagal
This book presents the basic concepts of survival analysis and frailty models, covering both fundamental and advanced topics. It focuses on applications of statistical tools in biology and medicine, highlighting the latest frailty-model methodologies and applications in these areas. After explaining the basic concepts of survival analysis, the book goes on to discuss shared, bivariate, and correlated frailty models and their applications. It also features nine datasets that have been analyzed using the R statistical package. Covering recent topics, not addressed elsewhere in the literature, this book is of immense use to scientists, researchers, students and teachers.
Author |
: Philip Hougaard |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 559 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781461213048 |
ISBN-13 |
: 1461213045 |
Rating |
: 4/5 (48 Downloads) |
Synopsis Analysis of Multivariate Survival Data by : Philip Hougaard
Survival data or more general time-to-event data occur in many areas, including medicine, biology, engineering, economics, and demography, but previously standard methods have requested that all time variables are univariate and independent. This book extends the field by allowing for multivariate times. As the field is rather new, the concepts and the possible types of data are described in detail. Four different approaches to the analysis of such data are presented from an applied point of view.
Author |
: John P. Klein |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 446 |
Release |
: 2013-03-09 |
ISBN-10 |
: 9789401579834 |
ISBN-13 |
: 9401579830 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Survival Analysis: State of the Art by : John P. Klein
Survival analysis is a highly active area of research with applications spanning the physical, engineering, biological, and social sciences. In addition to statisticians and biostatisticians, researchers in this area include epidemiologists, reliability engineers, demographers and economists. The economists survival analysis by the name of duration analysis and the analysis of transition data. We attempted to bring together leading researchers, with a common interest in developing methodology in survival analysis, at the NATO Advanced Research Workshop. The research works collected in this volume are based on the presentations at the Workshop. Analysis of survival experiments is complicated by issues of censoring, where only partial observation of an individual's life length is available and left truncation, where individuals enter the study group if their life lengths exceed a given threshold time. Application of the theory of counting processes to survival analysis, as developed by the Scandinavian School, has allowed for substantial advances in the procedures for analyzing such experiments. The increased use of computer intensive solutions to inference problems in survival analysis~ in both the classical and Bayesian settings, is also evident throughout the volume. Several areas of research have received special attention in the volume.
Author |
: Vlad Stefan Barbu |
Publisher |
: John Wiley & Sons |
Total Pages |
: 288 |
Release |
: 2020-12-03 |
ISBN-10 |
: 9781786306036 |
ISBN-13 |
: 1786306034 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Statistical Topics and Stochastic Models for Dependent Data with Applications by : Vlad Stefan Barbu
This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.
Author |
: Takeshi Emura |
Publisher |
: Springer |
Total Pages |
: 126 |
Release |
: 2019-03-25 |
ISBN-10 |
: 9789811335167 |
ISBN-13 |
: 9811335168 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Survival Analysis with Correlated Endpoints by : Takeshi Emura
This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors’ original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.
Author |
: Melinda Mills |
Publisher |
: SAGE |
Total Pages |
: 301 |
Release |
: 2011-01-19 |
ISBN-10 |
: 9781848601024 |
ISBN-13 |
: 1848601026 |
Rating |
: 4/5 (24 Downloads) |
Synopsis Introducing Survival and Event History Analysis by : Melinda Mills
This book is an accessible, practical and comprehensive guide for researchers from multiple disciplines including biomedical, epidemiology, engineering and the social sciences. Written for accessibility, this book will appeal to students and researchers who want to understand the basics of survival and event history analysis and apply these methods without getting entangled in mathematical and theoretical technicalities. Inside, readers are offered a blueprint for their entire research project from data preparation to model selection and diagnostics. Engaging, easy to read, functional and packed with enlightening examples, ‘hands-on’ exercises, conversations with key scholars and resources for both students and instructors, this text allows researchers to quickly master advanced statistical techniques. It is written from the perspective of the ‘user’, making it suitable as both a self-learning tool and graduate-level textbook. Also included are up-to-date innovations in the field, including advancements in the assessment of model fit, unobserved heterogeneity, recurrent events and multilevel event history models. Practical instructions are also included for using the statistical programs of R, STATA and SPSS, enabling readers to replicate the examples described in the text.
Author |
: Catherine Legrand |
Publisher |
: CRC Press |
Total Pages |
: 361 |
Release |
: 2021-03-22 |
ISBN-10 |
: 9780429622557 |
ISBN-13 |
: 0429622554 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Advanced Survival Models by : Catherine Legrand
Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome Uses consistent notation throughout the book for the different techniques presented Explains in which situation each of these models should be used, and how they are linked to specific research questions Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.
Author |
: Odd Aalen |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 550 |
Release |
: 2008-09-16 |
ISBN-10 |
: 9780387685601 |
ISBN-13 |
: 038768560X |
Rating |
: 4/5 (01 Downloads) |
Synopsis Survival and Event History Analysis by : Odd Aalen
The aim of this book is to bridge the gap between standard textbook models and a range of models where the dynamic structure of the data manifests itself fully. The common denominator of such models is stochastic processes. The authors show how counting processes, martingales, and stochastic integrals fit very nicely with censored data. Beginning with standard analyses such as Kaplan-Meier plots and Cox regression, the presentation progresses to the additive hazard model and recurrent event data. Stochastic processes are also used as natural models for individual frailty; they allow sensible interpretations of a number of surprising artifacts seen in population data. The stochastic process framework is naturally connected to causality. The authors show how dynamic path analyses can incorporate many modern causality ideas in a framework that takes the time aspect seriously. To make the material accessible to the reader, a large number of practical examples, mainly from medicine, are developed in detail. Stochastic processes are introduced in an intuitive and non-technical manner. The book is aimed at investigators who use event history methods and want a better understanding of the statistical concepts. It is suitable as a textbook for graduate courses in statistics and biostatistics.