The Estimation of Probabilities

The Estimation of Probabilities
Author :
Publisher : Mit Press
Total Pages : 122
Release :
ISBN-10 : 0262570157
ISBN-13 : 9780262570152
Rating : 4/5 (57 Downloads)

Synopsis The Estimation of Probabilities by : Irving John Good

The problem of how to estimate probabilities has interested philosophers, statisticians, actuaries, and mathematicians for a long time. It is currently of interest for automatic recognition, medical diagnosis, and artificial intelligence in general. The main purpose of this monograph is to review existing methods, especially those that are new or have not been written up in a connected manner. The need for nontrivial theory arises because our samples are usually too small for us to rely exclusively on the frequency definition of probability. Most of the techniques described in this book depend on a modern Bayesian approach. The maximum-entropy principle, also relevant to this discussion, is used in the last chapter. It is hoped that the book will stimulate further work in a field whose importance will increasingly be recognized. Methods for estimating probabilities are related to another part of statistics, namely, significance testing, and examples of this relationship are also presented. Many readers will be persuaded by this work that it is necessary to make use of a theory of subjective probability in order to estimate physical probabilities; and also that a useful idea is that of a hierarchy of three types of probability which can sometimes be identified with, physical, logical, and subjective probabilities. The Estimation of Probabilities is intended for statisticians, probabilists, philosophers of science, mathematicians, medical diagnosticians, and workers on artificial intelligence.

Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems

Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems
Author :
Publisher : Woodhead Publishing
Total Pages : 217
Release :
ISBN-10 : 9780081001110
ISBN-13 : 0081001118
Rating : 4/5 (10 Downloads)

Synopsis Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems by : Jerome Morio

Rare event probability (10-4 and less) estimation has become a large area of research in the reliability engineering and system safety domains. A significant number of methods have been proposed to reduce the computation burden for the estimation of rare events from advanced sampling approaches to extreme value theory. However, it is often difficult in practice to determine which algorithm is the most adapted to a given problem.Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach provides a broad up-to-date view of the current available techniques to estimate rare event probabilities described with a unified notation, a mathematical pseudocode to ease their potential implementation and finally a large spectrum of simulation results on academic and realistic use cases. Provides a broad overview of the practical approach of rare event methods. Includes algorithms that are applied to aerospace benchmark test cases Offers insight into practical tuning issues

Estimating and Choosing

Estimating and Choosing
Author :
Publisher : Springer Science & Business Media
Total Pages : 147
Release :
ISBN-10 : 9783642488177
ISBN-13 : 364248817X
Rating : 4/5 (77 Downloads)

Synopsis Estimating and Choosing by : Georges Matheron

Ever since the beginning of modern probability theory in the seventeenth century there has been a continuous debate over the meaning and applicability of the concept of probability. This book presents a coherent and well thoughtout framework for the use of probabilistic models to describe unique phenomena in a purely objective way. Although Estimating and Choosing was written with geostatistical applications in mind, the approach is of general applicability across the whole spectrum of probabilistic modelling. The only full-fledged treatment of the foundations of practical probability modelling ever written, this book fills an important gap in the literature of probability and statistics.

A Mathematical Primer for Social Statistics

A Mathematical Primer for Social Statistics
Author :
Publisher : SAGE Publications
Total Pages : 199
Release :
ISBN-10 : 9781071833247
ISBN-13 : 1071833243
Rating : 4/5 (47 Downloads)

Synopsis A Mathematical Primer for Social Statistics by : John Fox

A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.

Understanding and Calculating the Odds

Understanding and Calculating the Odds
Author :
Publisher : INFAROM Publishing
Total Pages : 300
Release :
ISBN-10 : 9789738752016
ISBN-13 : 9738752019
Rating : 4/5 (16 Downloads)

Synopsis Understanding and Calculating the Odds by : Catalin Barboianu

This book presents not only the mathematical concept of probability, but also its philosophical aspects, the relativity of probability and its applications and even the psychology of probability. All explanations are made in a comprehensible manner and are supported with suggestive examples from nature and daily life, and even with challenging math paradoxes. (Mathematics)

Sequential Estimation

Sequential Estimation
Author :
Publisher : John Wiley & Sons
Total Pages : 504
Release :
ISBN-10 : 9781118165911
ISBN-13 : 1118165918
Rating : 4/5 (11 Downloads)

Synopsis Sequential Estimation by : Malay Ghosh

The only comprehensive guide to the theory and practice of one oftoday's most important probabilistic techniques The past 15 years have witnessed many significant advances insequential estimation, especially in the areas of three-stage andnonparametric methodology. Yet, until now, there were no referencesdevoted exclusively to this rapidly growing statisticalfield. Sequential Estimation is the first, single-source guide to thetheory and practice of both classical and modern sequentialestimation techniques--including parametric and nonparametricmethods. Researchers in sequential analysis will appreciate theunified, logically integrated treatment of the subject, as well ascoverage of important contemporary procedures not covered in moregeneral sequential analysis texts, such as: * Shrinkage estimation * Empirical and hierarchical Bayes procedures * Multistage sampling and accelerated sampling procedures * Time-sequential estimation * Sequential estimation in finite population sampling * Reliability estimation and capture-recapture methodologiesleading to sequential tagging schemes An indispensable resource for researchers in sequential analysis,Sequential Estimation is an ideal graduate-level text as well.

Probability, Random Variables, Statistics, and Random Processes

Probability, Random Variables, Statistics, and Random Processes
Author :
Publisher : John Wiley & Sons
Total Pages : 421
Release :
ISBN-10 : 9781119300816
ISBN-13 : 1119300819
Rating : 4/5 (16 Downloads)

Synopsis Probability, Random Variables, Statistics, and Random Processes by : Ali Grami

Probability, Random Variables, Statistics, and Random Processes: Fundamentals & Applications is a comprehensive undergraduate-level textbook. With its excellent topical coverage, the focus of this book is on the basic principles and practical applications of the fundamental concepts that are extensively used in various Engineering disciplines as well as in a variety of programs in Life and Social Sciences. The text provides students with the requisite building blocks of knowledge they require to understand and progress in their areas of interest. With a simple, clear-cut style of writing, the intuitive explanations, insightful examples, and practical applications are the hallmarks of this book. The text consists of twelve chapters divided into four parts. Part-I, Probability (Chapters 1 – 3), lays a solid groundwork for probability theory, and introduces applications in counting, gambling, reliability, and security. Part-II, Random Variables (Chapters 4 – 7), discusses in detail multiple random variables, along with a multitude of frequently-encountered probability distributions. Part-III, Statistics (Chapters 8 – 10), highlights estimation and hypothesis testing. Part-IV, Random Processes (Chapters 11 – 12), delves into the characterization and processing of random processes. Other notable features include: Most of the text assumes no knowledge of subject matter past first year calculus and linear algebra With its independent chapter structure and rich choice of topics, a variety of syllabi for different courses at the junior, senior, and graduate levels can be supported A supplemental website includes solutions to about 250 practice problems, lecture slides, and figures and tables from the text Given its engaging tone, grounded approach, methodically-paced flow, thorough coverage, and flexible structure, Probability, Random Variables, Statistics, and Random Processes: Fundamentals & Applications clearly serves as a must textbook for courses not only in Electrical Engineering, but also in Computer Engineering, Software Engineering, and Computer Science.

Parameter Estimation in Engineering and Science

Parameter Estimation in Engineering and Science
Author :
Publisher : James Beck
Total Pages : 540
Release :
ISBN-10 : 0471061182
ISBN-13 : 9780471061182
Rating : 4/5 (82 Downloads)

Synopsis Parameter Estimation in Engineering and Science by : James Vere Beck

Introduction to and survey of parameter estimation; Probability; Introduction to statistics; Parameter estimation methods; Introduction to linear estimation; Matrix analysis for linear parameter estimation; Minimization of sum of squares functions for models nonlinear in parameters; Design of optimal experiments.

Linear Probability, Logit, and Probit Models

Linear Probability, Logit, and Probit Models
Author :
Publisher : SAGE
Total Pages : 100
Release :
ISBN-10 : 0803921330
ISBN-13 : 9780803921337
Rating : 4/5 (30 Downloads)

Synopsis Linear Probability, Logit, and Probit Models by : John H. Aldrich

After showing why ordinary regression analysis is not appropriate for investigating dichotomous or otherwise 'limited' dependent variables, this volume examines three techniques which are well suited for such data. It reviews the linear probability model and discusses alternative specifications of non-linear models.

Probability and Bayesian Modeling

Probability and Bayesian Modeling
Author :
Publisher : CRC Press
Total Pages : 553
Release :
ISBN-10 : 9781351030137
ISBN-13 : 1351030132
Rating : 4/5 (37 Downloads)

Synopsis Probability and Bayesian Modeling by : Jim Albert

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.