The Economic Impact of Implementing Nondestructive Testing of Reinforced Concrete Bridge Decks in Indiana

The Economic Impact of Implementing Nondestructive Testing of Reinforced Concrete Bridge Decks in Indiana
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1622604350
ISBN-13 : 9781622604357
Rating : 4/5 (50 Downloads)

Synopsis The Economic Impact of Implementing Nondestructive Testing of Reinforced Concrete Bridge Decks in Indiana by : Benjamin Taylor

The deck is among the most expensive components of a bridge over its lifetime because of the frequent and costly maintenance and rehabilitation required. Currently, the Indiana Department of Transportation (INDOT) performs visual inspections of a bridge deck as the principal means of determining its condition, which enables the inspector to definitively document the surface condition while the unseen condition below the deck surface is left to the inspector's expert judgement. To compensate for this lack of data, INDOT supplements visual inspections with programmatic scheduling for major work actions, which is very effective for INDOT but costly. In this continuing era of funding shortfalls, INDOT commissioned this study to investigate nondestructive testing (NDT) methods to fill their data gap to inform its work action decision. The NDT methods have been shown to accurately locate corrosion and delamination and are a cost-effective alternative. A project level comparison between the NDT methods was performed to show which method, as well as which combination of methods, were the best choices from a cost perspective. A project level analysis of 30 bridge decks was performed, and those costs were compared to the costs of the current INDOT programmatic schedules. Finally, the analysis was expanded to the network level, which included the entire bridge inventory in Indiana. The results of this study indicate that implementing the NDT methods is cost-effective for INDOT at both the project and network levels.

Nondestructive Testing to Identify Concrete Bridge Deck Deterioration

Nondestructive Testing to Identify Concrete Bridge Deck Deterioration
Author :
Publisher : Transportation Research Board
Total Pages : 96
Release :
ISBN-10 : 9780309129336
ISBN-13 : 0309129338
Rating : 4/5 (36 Downloads)

Synopsis Nondestructive Testing to Identify Concrete Bridge Deck Deterioration by :

" TRB's second Strategic Highway Research Program (SHRP 2) Report S2-R06A-RR-1: Nondestructive Testing to Identify Concrete Bridge Deck Deterioration identifies nondestructive testing technologies for detecting and characterizing common forms of deterioration in concrete bridge decks.The report also documents the validation of promising technologies, and grades and ranks the technologies based on results of the validations.The main product of this project will be an electronic repository for practitioners, known as the NDToolbox, which will provide information regarding recommended technologies for the detection of a particular deterioration. " -- publisher's description.

Evaluating Concrete Damage in Bridge Decks with and Without Overlays Using Nondestructive Testing Procedures

Evaluating Concrete Damage in Bridge Decks with and Without Overlays Using Nondestructive Testing Procedures
Author :
Publisher :
Total Pages : 16
Release :
ISBN-10 : OCLC:1251686097
ISBN-13 :
Rating : 4/5 (97 Downloads)

Synopsis Evaluating Concrete Damage in Bridge Decks with and Without Overlays Using Nondestructive Testing Procedures by : Tyler W. Robison

The state of Wyoming alone has 13.1 million square feet of bridge deck, and evaluation of those decks has become an important part of the Wyoming Department of Transportation's (WYDOT) management of bridge repairs. The authors believe that development and advancement of nondestructive evaluation methods over the past 25 years may provide a more efficient, standardized, and accurate method for evaluating bridge deck conditions compared with current practices. A study was performed on three bridge decks in Wyoming: the First Street Bridge in Casper, the Douglas I-25 Bridge, and the Remount I-80 Bridge. For each bridge, an investigation was done using standard WYDOT practices for chain dragging. In addition, the bridges were evaluated using impact echo, thermal imaging, and ground-penetrating radar (GPR) techniques. All three methods considered were successful, and the damage locations between the impact echo, thermal imaging, and GPR generally correlated well. Based on this study, a complete bridge deck evaluation should combine impact echo with GPR testing to provide the most accurate predictions of delamination and debonding in support of optimal maintenance decisions.

Relating Material Properties to Exposure Conditions for Predicting Service Life in Concrete Bridge Decks in Indiana

Relating Material Properties to Exposure Conditions for Predicting Service Life in Concrete Bridge Decks in Indiana
Author :
Publisher : Purdue University Press
Total Pages : 220
Release :
ISBN-10 : 1622601297
ISBN-13 : 9781622601295
Rating : 4/5 (97 Downloads)

Synopsis Relating Material Properties to Exposure Conditions for Predicting Service Life in Concrete Bridge Decks in Indiana by : Vinit Barde

Bridges in the US are deteriorating at an alarming rate. It has been estimated that transportation agencies across the US invest more than 5 billion dollars on concrete bridge repair and renovation annually. To meet the needs of transportation industry, high performance concrete (HPC) has been developed for the construction of bridges. However, the link between material properties and field performance is not completely established. Goodspeed et al. [1996] defined the performance of concrete using four material parameters that describe durability and four material parameters that describe mechanical properties. However, material properties alone cannot entirely define field performance. Rather some consideration is needed to quantify the conditions to which the concrete will be exposed. The exposure conditions vary based on the geographical location. This work relates material properties with the exposure conditions typical of those in the state of Indiana to estimate the performance of concrete bridge decks. The exposure conditions in the state of Indiana were assessed. Specifically, temperature, rainfall, wetting events, freeze thaw cycles, and relative humidity have been classified. To assess the variation in these parameters across the state, contour maps were developed using information from cities in the state of Indiana as well as cities in surrounding states. The eight parameters suggested by Goodspeed et al. [1996] were reviewed. Three key distresses behavior (chloride ingress, freezing and thawing, and shrinkage cracking) have been investigated in depth. Relationships have been developed to relate measured material properties (from the results of AASHTO/ASTM tests) with the predicted performance of the concrete structure under different exposure condition. First, a model is presented that relates the results of Rapid Chloride Permeability Test (RCPT) with the anticipated service life of bridge deck against corrosion due to chloride ingress. Second, a model is presented that relates results of sorptivity, porosity, and critical saturation with the anticipated service life of concrete exposed to freezing and thawing. Third, a model is presented that relates the shrinkage of concrete with the potential for premature cracking. The results of each of the models have been presented for conditions that are typical of the state of Indiana.

Adaptive Reliability Analysis of Reinforced Concrete Bridges Using Nondestructive Testing

Adaptive Reliability Analysis of Reinforced Concrete Bridges Using Nondestructive Testing
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:747270533
ISBN-13 :
Rating : 4/5 (33 Downloads)

Synopsis Adaptive Reliability Analysis of Reinforced Concrete Bridges Using Nondestructive Testing by : Qindan Huang

There has been increasing interest in evaluating the performance of existing reinforced concrete (RC) bridges just after natural disasters or man-made events especially when the defects are invisible, or in quantifying the improvement after rehabilitations. In order to obtain an accurate assessment of the reliability of a RC bridge, it is critical to incorporate information about its current structural properties, which reflects the possible aging and deterioration. This dissertation proposes to develop an adaptive reliability analysis of RC bridges incorporating the damage detection information obtained from nondestructive testing (NDT). In this study, seismic fragility is used to describe the reliability of a structure withstanding future seismic demand. It is defined as the conditional probability that a seismic demand quantity attains or exceeds a specified capacity level for given values of earthquake intensity. The dissertation first develops a probabilistic capacity model for RC columns and the capacity model can be used when the flexural stiffness decays nonuniformly over a column height. Then, a general methodology to construct probabilistic seismic demand models for RC highway bridges with one single-column bent is presented. Next, a combination of global and local NDT methods is proposed to identify in-place structural properties. The global NDT uses the dynamic responses of a structure to assess its global/equivalent structural properties and detect potential damage locations. The local NDT uses local measurements to identify the local characteristics of the structure. Measurement and modeling errors are considered in the application of the NDT methods and the analysis of the NDT data. Then, the information obtained from NDT is used in the probabilistic capacity and demand models to estimate the seismic fragility of the bridge. As an illustration, the proposed probabilistic framework is applied to a reinforced concrete bridge with a one-column bent. The result of the illustration shows that the proposed framework can successfully provide the up-to-date structural properties and accurate fragility estimates.

The Engineering Index Annual

The Engineering Index Annual
Author :
Publisher :
Total Pages : 2282
Release :
ISBN-10 : MINN:31951000576919L
ISBN-13 :
Rating : 4/5 (9L Downloads)

Synopsis The Engineering Index Annual by :

Since its creation in 1884, Engineering Index has covered virtually every major engineering innovation from around the world. It serves as the historical record of virtually every major engineering innovation of the 20th century. Recent content is a vital resource for current awareness, new production information, technological forecasting and competitive intelligence. The world?s most comprehensive interdisciplinary engineering database, Engineering Index contains over 10.7 million records. Each year, over 500,000 new abstracts are added from over 5,000 scholarly journals, trade magazines, and conference proceedings. Coverage spans over 175 engineering disciplines from over 80 countries. Updated weekly.