The Center and Cyclicity Problems

The Center and Cyclicity Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 336
Release :
ISBN-10 : 9780817647278
ISBN-13 : 0817647279
Rating : 4/5 (78 Downloads)

Synopsis The Center and Cyclicity Problems by : Valery Romanovski

Using a computational algebra approach, this comprehensive text addresses the center and cyclicity problems as behaviors of dynamical systems and families of polynomial systems. The book gives the main properties of ideals in polynomial rings and their affine varieties followed by a discussion on the theory of normal forms and stability of differential equations. It contains numerous examples, pseudocode displays of all the computational algorithms, historical notes, nearly two hundred exercises, and an extensive bibliography, making it a suitable graduate textbook as well as research reference.

Computer Algebra in Scientific Computing

Computer Algebra in Scientific Computing
Author :
Publisher : Springer
Total Pages : 419
Release :
ISBN-10 : 9783319663203
ISBN-13 : 3319663208
Rating : 4/5 (03 Downloads)

Synopsis Computer Algebra in Scientific Computing by : Vladimir P. Gerdt

This book constitutes the proceedings of the 19th International Workshop on Computer Algebra in Scientific Computing, CASC 2017, held in Beijing, China, in September 2017. The 28 full papers presented in this volume were carefully reviewed and selected from 33 submissions. They deal with cutting-edge research in all major disciplines of Computer Algebra.

Global Bifurcation Theory and Hilbert’s Sixteenth Problem

Global Bifurcation Theory and Hilbert’s Sixteenth Problem
Author :
Publisher : Springer Science & Business Media
Total Pages : 199
Release :
ISBN-10 : 9781441991683
ISBN-13 : 1441991689
Rating : 4/5 (83 Downloads)

Synopsis Global Bifurcation Theory and Hilbert’s Sixteenth Problem by : V. Gaiko

On the 8th of August 1900 outstanding German mathematician David Hilbert delivered a talk "Mathematical problems" at the Second Interna tional Congress of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema tics in many respects (1, 119]. Hilbert's Sixteenth Problem (the second part) was stated as follows: Problem. To find the maximum number and to determine the relative position of limit cycles of the equation dy Qn(X, y) -= dx Pn(x, y)' where Pn and Qn are polynomials of real variables x, y with real coeffi cients and not greater than n degree. The study of limit cycles is an interesting and very difficult problem of the qualitative theory of differential equations. This theory was origi nated at the end of the nineteenth century in the works of two geniuses of the world science: of the Russian mathematician A. M. Lyapunov and of the French mathematician Henri Poincare. A. M. Lyapunov set forth and solved completely in the very wide class of cases a special problem of the qualitative theory: the problem of motion stability (154]. In turn, H. Poincare stated a general problem of the qualitative analysis which was formulated as follows: not integrating the differential equation and using only the properties of its right-hand sides, to give as more as possi ble complete information on the qualitative behaviour of integral curves defined by this equation (176].

Planar Dynamical Systems

Planar Dynamical Systems
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 464
Release :
ISBN-10 : 9783110389142
ISBN-13 : 3110389142
Rating : 4/5 (42 Downloads)

Synopsis Planar Dynamical Systems by : Yirong Liu

In 2008, November 23-28, the workshop of ”Classical Problems on Planar Polynomial Vector Fields ” was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincaré for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert’s 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincaré and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert’s 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.

Bifurcations and Periodic Orbits of Vector Fields

Bifurcations and Periodic Orbits of Vector Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 483
Release :
ISBN-10 : 9789401582384
ISBN-13 : 9401582386
Rating : 4/5 (84 Downloads)

Synopsis Bifurcations and Periodic Orbits of Vector Fields by : Dana Schlomiuk

The last thirty years were a period of continuous and intense growth in the subject of dynamical systems. New concepts and techniques and at the same time new areas of applications of the theory were found. The 31st session of the Seminaire de Mathematiques Superieures (SMS) held at the Universite de Montreal in July 1992 was on dynamical systems having as its center theme "Bifurcations and periodic orbits of vector fields". This session of the SMS was a NATO Advanced Study Institute (ASI). This ASI had the purpose of acquainting the participants with some of the most recent developments and of stimulating new research around the chosen center theme. These developments include the major tools of the new resummation techniques with applications, in particular to the proof of the non-accumulation of limit-cycles for real-analytic plane vector fields. One of the aims of the ASI was to bring together methods from real and complex dy namical systems. There is a growing awareness that an interplay between real and complex methods is both useful and necessary for the solution of some of the problems. Complex techniques become powerful tools which yield valuable information when applied to the study of the dynamics of real vector fields. The recent developments show that no rigid frontiers between disciplines exist and that interesting new developments occur when ideas and techniques from diverse disciplines are married. One of the aims of the ASI was to show these multiple interactions at work.

Ring Theory 1989

Ring Theory 1989
Author :
Publisher :
Total Pages : 444
Release :
ISBN-10 : STANFORD:36105033243531
ISBN-13 :
Rating : 4/5 (31 Downloads)

Synopsis Ring Theory 1989 by : Shimshon A. Amitsur

Normal Forms, Bifurcations and Finiteness Problems in Differential Equations

Normal Forms, Bifurcations and Finiteness Problems in Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 548
Release :
ISBN-10 : 1402019297
ISBN-13 : 9781402019296
Rating : 4/5 (97 Downloads)

Synopsis Normal Forms, Bifurcations and Finiteness Problems in Differential Equations by : Christiane Rousseau

Proceedings of the Nato Advanced Study Institute, held in Montreal, Canada, from 8 to 19 July 2002

A3 & His Algebra

A3 & His Algebra
Author :
Publisher : iUniverse
Total Pages : 368
Release :
ISBN-10 : 9780595328178
ISBN-13 : 0595328172
Rating : 4/5 (78 Downloads)

Synopsis A3 & His Algebra by : Nancy E. Albert

A3 & HIS ALGEBRA is the true story of a struggling young boy from Chicago's west side who grew to become a force in American mathematics. For nearly 50 years, A. A. Albert thrived at the University of Chicago, one of the world's top centers for algebra. His "pure research" in algebra found its way into modern computers, rocket guidance systems, cryptology, and quantum mechanics, the basic theory behind atomic energy calculations. This first-hand account of the life of a world-renowned American mathematician is written by Albert's daughter. Her memoir, which favors a general audience, offers a personal and revealing look at the multidimensional life of an academic who had a lasting impact on his profession. SOME QUOTATIONS FROM PROFESSOR ALBERT: "There are really few bad students of mathematics. There are, instead, many bad teachers and bad curricula..." "The difficulty of learning mathematics is increased by the fact that in so many high schools this very difficult subject is considered to be teachable by those whose major subject is language, botany, or even physical education." "It is still true that in a majority of American universities the way to find the Department of Mathematics is to ask for the location of the oldest and most decrepit building on campus." "The production of a single scientist of first magnitude will have a greater impact on our civilization than the production of fifty mediocre Ph.D.'s." "Freedom is having the time to do research...Even in mathematics there are 'fashions'. This doesn't mean that the researcher is controlled by them. Many go their own way, ignoring the fashionable. That's part of the strength of a great university."