Testing Research Hypotheses with the General Linear Model

Testing Research Hypotheses with the General Linear Model
Author :
Publisher : SIU Press
Total Pages : 400
Release :
ISBN-10 : 0809320193
ISBN-13 : 9780809320196
Rating : 4/5 (93 Downloads)

Synopsis Testing Research Hypotheses with the General Linear Model by : Keith A. McNeil

Briefly describes 777 serial bibliographies relating to modern literature in most of the major languages. Chapters cover comprehensive bibliographies, those for English and foreign literatures, for topics from African American studies to women's studies, and for particular authors. The 1982 edition has been updated and expanded to include information on electronic serial bibliographies. Paper edition (unseen), $19.75. Annotation copyright by Book News, Inc., Portland, OR

Multivariate General Linear Models

Multivariate General Linear Models
Author :
Publisher : SAGE
Total Pages : 225
Release :
ISBN-10 : 9781412972499
ISBN-13 : 1412972493
Rating : 4/5 (99 Downloads)

Synopsis Multivariate General Linear Models by : Richard F. Haase

This title provides an integrated introduction to multivariate multiple regression analysis (MMR) and multivariate analysis of variance (MANOVA). It defines the key steps in analyzing linear model data and introduces multivariate linear model analysis as a generalization of the univariate model. Richard F. Haase focuses on multivariate measures of association for four common multivariate test statistics, presents a flexible method for testing hypotheses on models, and emphasizes the multivariate procedures attributable to Wilks, Pillai, Hotelling, and Roy.

The Linear Model and Hypothesis

The Linear Model and Hypothesis
Author :
Publisher : Springer
Total Pages : 208
Release :
ISBN-10 : 9783319219301
ISBN-13 : 3319219308
Rating : 4/5 (01 Downloads)

Synopsis The Linear Model and Hypothesis by : George Seber

This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involvematrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality to other models in the analysis of variance, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.

Linear Models in Statistics

Linear Models in Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 690
Release :
ISBN-10 : 9780470192603
ISBN-13 : 0470192607
Rating : 4/5 (03 Downloads)

Synopsis Linear Models in Statistics by : Alvin C. Rencher

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Biostatistics for Animal Science, 3rd Edition

Biostatistics for Animal Science, 3rd Edition
Author :
Publisher : CABI
Total Pages : 563
Release :
ISBN-10 : 9781786390356
ISBN-13 : 1786390353
Rating : 4/5 (56 Downloads)

Synopsis Biostatistics for Animal Science, 3rd Edition by : Miroslav Kaps

Designed to cover techniques for analysis of data in the animal sciences, this popular textbook provides an overview of the basic principles of statistics enabling the subsequent applications to be carried out with familiarity and understanding. Each chapter begins by introducing a problem with practical questions, followed by a brief theoretical background. Most topics are followed up with numerical examples to illustrate the methods described using data-sets from animal sciences and related fields. The same examples are then solved using the SAS software package. Written primarily for students and researchers in animal sciences, the text is also useful for those studying agricultural, biological, and veterinary sciences.

The Routledge Encyclopedia of Research Methods in Applied Linguistics

The Routledge Encyclopedia of Research Methods in Applied Linguistics
Author :
Publisher : Routledge
Total Pages : 509
Release :
ISBN-10 : 9781317326021
ISBN-13 : 1317326024
Rating : 4/5 (21 Downloads)

Synopsis The Routledge Encyclopedia of Research Methods in Applied Linguistics by : A. Mehdi Riazi

The Routledge Encyclopedia of Research Methods in Applied Linguistics provides accessible and concise explanations of key concepts and terms related to research methods in applied linguistics. Encompassing the three research paradigms of quantitative, qualitative, and mixed methods, this volume is an essential reference for any student or researcher working in this area. This volume provides: A–Z coverage of 570 key methodological terms from all areas of applied linguistics; detailed analysis of each entry that includes an explanation of the head word, visual illustrations, cross-references to other terms, and further references for readers; an index of core concepts for quick reference. Comprehensively covering research method terminology used across all strands of applied linguistics, this encyclopedia is a must-have reference for the applied linguistics community.

The SAGE Encyclopedia of Social Science Research Methods

The SAGE Encyclopedia of Social Science Research Methods
Author :
Publisher : SAGE
Total Pages : 460
Release :
ISBN-10 : 0761923632
ISBN-13 : 9780761923633
Rating : 4/5 (32 Downloads)

Synopsis The SAGE Encyclopedia of Social Science Research Methods by : Michael Lewis-Beck

Featuring over 900 entries, this resource covers all disciplines within the social sciences with both concise definitions & in-depth essays.

Hierarchical Linear Models

Hierarchical Linear Models
Author :
Publisher : SAGE
Total Pages : 520
Release :
ISBN-10 : 076191904X
ISBN-13 : 9780761919049
Rating : 4/5 (4X Downloads)

Synopsis Hierarchical Linear Models by : Stephen W. Raudenbush

New edition of a text in which Raudenbush (U. of Michigan) and Bryk (sociology, U. of Chicago) provide examples, explanations, and illustrations of the theory and use of hierarchical linear models (HLM). New material in Part I (Logic) includes information on multivariate growth models and other topics.

Learning Statistics with R

Learning Statistics with R
Author :
Publisher : Lulu.com
Total Pages : 617
Release :
ISBN-10 : 9781326189723
ISBN-13 : 1326189727
Rating : 4/5 (23 Downloads)

Synopsis Learning Statistics with R by : Daniel Navarro

"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

NIDA Research Monograph

NIDA Research Monograph
Author :
Publisher :
Total Pages : 380
Release :
ISBN-10 : COLUMBIA:HR01752413
ISBN-13 :
Rating : 4/5 (13 Downloads)

Synopsis NIDA Research Monograph by :