Tensors for Data Processing

Tensors for Data Processing
Author :
Publisher : Academic Press
Total Pages : 598
Release :
ISBN-10 : 9780323859653
ISBN-13 : 0323859658
Rating : 4/5 (53 Downloads)

Synopsis Tensors for Data Processing by : Yipeng Liu

Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. - Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing - Includes a wide range of applications from different disciplines - Gives guidance for their application

Tensor Computation for Data Analysis

Tensor Computation for Data Analysis
Author :
Publisher : Springer Nature
Total Pages : 347
Release :
ISBN-10 : 9783030743864
ISBN-13 : 3030743861
Rating : 4/5 (64 Downloads)

Synopsis Tensor Computation for Data Analysis by : Yipeng Liu

Tensor is a natural representation for multi-dimensional data, and tensor computation can avoid possible multi-linear data structure loss in classical matrix computation-based data analysis. This book is intended to provide non-specialists an overall understanding of tensor computation and its applications in data analysis, and benefits researchers, engineers, and students with theoretical, computational, technical and experimental details. It presents a systematic and up-to-date overview of tensor decompositions from the engineer's point of view, and comprehensive coverage of tensor computation based data analysis techniques. In addition, some practical examples in machine learning, signal processing, data mining, computer vision, remote sensing, and biomedical engineering are also presented for easy understanding and implementation. These data analysis techniques may be further applied in other applications on neuroscience, communication, psychometrics, chemometrics, biometrics, quantum physics, quantum chemistry, etc. The discussion begins with basic coverage of notations, preliminary operations in tensor computations, main tensor decompositions and their properties. Based on them, a series of tensor-based data analysis techniques are presented as the tensor extensions of their classical matrix counterparts, including tensor dictionary learning, low rank tensor recovery, tensor completion, coupled tensor analysis, robust principal tensor component analysis, tensor regression, logistical tensor regression, support tensor machine, multilinear discriminate analysis, tensor subspace clustering, tensor-based deep learning, tensor graphical model and tensor sketch. The discussion also includes a number of typical applications with experimental results, such as image reconstruction, image enhancement, data fusion, signal recovery, recommendation system, knowledge graph acquisition, traffic flow prediction, link prediction, environmental prediction, weather forecasting, background extraction, human pose estimation, cognitive state classification from fMRI, infrared small target detection, heterogeneous information networks clustering, multi-view image clustering, and deep neural network compression.

Matrix and Tensor Decompositions in Signal Processing, Volume 2

Matrix and Tensor Decompositions in Signal Processing, Volume 2
Author :
Publisher : John Wiley & Sons
Total Pages : 386
Release :
ISBN-10 : 9781119700968
ISBN-13 : 1119700965
Rating : 4/5 (68 Downloads)

Synopsis Matrix and Tensor Decompositions in Signal Processing, Volume 2 by : Gérard Favier

The second volume will deal with a presentation of the main matrix and tensor decompositions and their properties of uniqueness, as well as very useful tensor networks for the analysis of massive data. Parametric estimation algorithms will be presented for the identification of the main tensor decompositions. After a brief historical review of the compressed sampling methods, an overview of the main methods of retrieving matrices and tensors with missing data will be performed under the low rank hypothesis. Illustrative examples will be provided.

Visualization and Processing of Tensor Fields

Visualization and Processing of Tensor Fields
Author :
Publisher : Springer Science & Business Media
Total Pages : 478
Release :
ISBN-10 : 9783540312727
ISBN-13 : 3540312722
Rating : 4/5 (27 Downloads)

Synopsis Visualization and Processing of Tensor Fields by : Joachim Weickert

Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.

Tensors in Image Processing and Computer Vision

Tensors in Image Processing and Computer Vision
Author :
Publisher : Springer Science & Business Media
Total Pages : 468
Release :
ISBN-10 : 9781848822993
ISBN-13 : 1848822995
Rating : 4/5 (93 Downloads)

Synopsis Tensors in Image Processing and Computer Vision by : Santiago Aja-Fernández

Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the state of the art in this new branch of signal processing, offering a great deal of research and discussions by leading experts in the area. The wide-ranging volume offers an overview into cutting-edge research into the newest tensor processing techniques and their application to different domains related to computer vision and image processing. This comprehensive text will prove to be an invaluable reference and resource for researchers, practitioners and advanced students working in the area of computer vision and image processing.

Tensor Regression

Tensor Regression
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1680838865
ISBN-13 : 9781680838862
Rating : 4/5 (65 Downloads)

Synopsis Tensor Regression by : Jiani Liu

Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis.

Vector and Tensor Analysis with Applications

Vector and Tensor Analysis with Applications
Author :
Publisher : Courier Corporation
Total Pages : 292
Release :
ISBN-10 : 9780486131900
ISBN-13 : 0486131904
Rating : 4/5 (00 Downloads)

Synopsis Vector and Tensor Analysis with Applications by : A. I. Borisenko

Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.

Tensors: Geometry and Applications

Tensors: Geometry and Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 464
Release :
ISBN-10 : 9780821869079
ISBN-13 : 0821869078
Rating : 4/5 (79 Downloads)

Synopsis Tensors: Geometry and Applications by : J. M. Landsberg

Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.

Tensor Methods in Statistics

Tensor Methods in Statistics
Author :
Publisher : Courier Dover Publications
Total Pages : 308
Release :
ISBN-10 : 9780486832692
ISBN-13 : 0486832694
Rating : 4/5 (92 Downloads)

Synopsis Tensor Methods in Statistics by : Peter McCullagh

A pioneering monograph on tensor methods applied to distributional problems arising in statistics, this work begins with the study of multivariate moments and cumulants. An invaluable reference for graduate students and professional statisticians. 1987 edition.

Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Introduction to Tensor Analysis and the Calculus of Moving Surfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 303
Release :
ISBN-10 : 9781461478676
ISBN-13 : 1461478677
Rating : 4/5 (76 Downloads)

Synopsis Introduction to Tensor Analysis and the Calculus of Moving Surfaces by : Pavel Grinfeld

This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.