Tensorflow Reinforcement Learning Quick Start Guide
Download Tensorflow Reinforcement Learning Quick Start Guide full books in PDF, epub, and Kindle. Read online free Tensorflow Reinforcement Learning Quick Start Guide ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Kaushik Balakrishnan |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 175 |
Release |
: 2019-03-30 |
ISBN-10 |
: 9781789533446 |
ISBN-13 |
: 1789533449 |
Rating |
: 4/5 (46 Downloads) |
Synopsis TensorFlow Reinforcement Learning Quick Start Guide by : Kaushik Balakrishnan
Leverage the power of Tensorflow to Create powerful software agents that can self-learn to perform real-world tasks Key FeaturesExplore efficient Reinforcement Learning algorithms and code them using TensorFlow and PythonTrain Reinforcement Learning agents for problems, ranging from computer games to autonomous driving.Formulate and devise selective algorithms and techniques in your applications in no time.Book Description Advances in reinforcement learning algorithms have made it possible to use them for optimal control in several different industrial applications. With this book, you will apply Reinforcement Learning to a range of problems, from computer games to autonomous driving. The book starts by introducing you to essential Reinforcement Learning concepts such as agents, environments, rewards, and advantage functions. You will also master the distinctions between on-policy and off-policy algorithms, as well as model-free and model-based algorithms. You will also learn about several Reinforcement Learning algorithms, such as SARSA, Deep Q-Networks (DQN), Deep Deterministic Policy Gradients (DDPG), Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). The book will also show you how to code these algorithms in TensorFlow and Python and apply them to solve computer games from OpenAI Gym. Finally, you will also learn how to train a car to drive autonomously in the Torcs racing car simulator. By the end of the book, you will be able to design, build, train, and evaluate feed-forward neural networks and convolutional neural networks. You will also have mastered coding state-of-the-art algorithms and also training agents for various control problems. What you will learnUnderstand the theory and concepts behind modern Reinforcement Learning algorithmsCode state-of-the-art Reinforcement Learning algorithms with discrete or continuous actionsDevelop Reinforcement Learning algorithms and apply them to training agents to play computer gamesExplore DQN, DDQN, and Dueling architectures to play Atari's Breakout using TensorFlowUse A3C to play CartPole and LunarLanderTrain an agent to drive a car autonomously in a simulatorWho this book is for Data scientists and AI developers who wish to quickly get started with training effective reinforcement learning models in TensorFlow will find this book very useful. Prior knowledge of machine learning and deep learning concepts (as well as exposure to Python programming) will be useful.
Author |
: Sayon Dutta |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 327 |
Release |
: 2018-04-24 |
ISBN-10 |
: 9781788830713 |
ISBN-13 |
: 1788830717 |
Rating |
: 4/5 (13 Downloads) |
Synopsis Reinforcement Learning with TensorFlow by : Sayon Dutta
Leverage the power of the Reinforcement Learning techniques to develop self-learning systems using Tensorflow Key Features Learn reinforcement learning concepts and their implementation using TensorFlow Discover different problem-solving methods for Reinforcement Learning Apply reinforcement learning for autonomous driving cars, robobrokers, and more Book Description Reinforcement Learning (RL), allows you to develop smart, quick and self-learning systems in your business surroundings. It is an effective method to train your learning agents and solve a variety of problems in Artificial Intelligence—from games, self-driving cars and robots to enterprise applications that range from datacenter energy saving (cooling data centers) to smart warehousing solutions. The book covers the major advancements and successes achieved in deep reinforcement learning by synergizing deep neural network architectures with reinforcement learning. The book also introduces readers to the concept of Reinforcement Learning, its advantages and why it’s gaining so much popularity. The book also discusses on MDPs, Monte Carlo tree searches, dynamic programming such as policy and value iteration, temporal difference learning such as Q-learning and SARSA. You will use TensorFlow and OpenAI Gym to build simple neural network models that learn from their own actions. You will also see how reinforcement learning algorithms play a role in games, image processing and NLP. By the end of this book, you will have a firm understanding of what reinforcement learning is and how to put your knowledge to practical use by leveraging the power of TensorFlow and OpenAI Gym. What you will learn Implement state-of-the-art Reinforcement Learning algorithms from the basics Discover various techniques of Reinforcement Learning such as MDP, Q Learning and more Learn the applications of Reinforcement Learning in advertisement, image processing, and NLP Teach a Reinforcement Learning model to play a game using TensorFlow and the OpenAI gym Understand how Reinforcement Learning Applications are used in robotics Who this book is for If you want to get started with reinforcement learning using TensorFlow in the most practical way, this book will be a useful resource. The book assumes prior knowledge of machine learning and neural network programming concepts, as well as some understanding of the TensorFlow framework. No previous experience with Reinforcement Learning is required.
Author |
: Praveen Palanisamy |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 473 |
Release |
: 2021-01-15 |
ISBN-10 |
: 9781838985998 |
ISBN-13 |
: 1838985999 |
Rating |
: 4/5 (98 Downloads) |
Synopsis TensorFlow 2 Reinforcement Learning Cookbook by : Praveen Palanisamy
Discover recipes for developing AI applications to solve a variety of real-world business problems using reinforcement learning Key FeaturesDevelop and deploy deep reinforcement learning-based solutions to production pipelines, products, and servicesExplore popular reinforcement learning algorithms such as Q-learning, SARSA, and the actor-critic methodCustomize and build RL-based applications for performing real-world tasksBook Description With deep reinforcement learning, you can build intelligent agents, products, and services that can go beyond computer vision or perception to perform actions. TensorFlow 2.x is the latest major release of the most popular deep learning framework used to develop and train deep neural networks (DNNs). This book contains easy-to-follow recipes for leveraging TensorFlow 2.x to develop artificial intelligence applications. Starting with an introduction to the fundamentals of deep reinforcement learning and TensorFlow 2.x, the book covers OpenAI Gym, model-based RL, model-free RL, and how to develop basic agents. You'll discover how to implement advanced deep reinforcement learning algorithms such as actor-critic, deep deterministic policy gradients, deep-Q networks, proximal policy optimization, and deep recurrent Q-networks for training your RL agents. As you advance, you’ll explore the applications of reinforcement learning by building cryptocurrency trading agents, stock/share trading agents, and intelligent agents for automating task completion. Finally, you'll find out how to deploy deep reinforcement learning agents to the cloud and build cross-platform apps using TensorFlow 2.x. By the end of this TensorFlow book, you'll have gained a solid understanding of deep reinforcement learning algorithms and their implementations from scratch. What you will learnBuild deep reinforcement learning agents from scratch using the all-new TensorFlow 2.x and Keras APIImplement state-of-the-art deep reinforcement learning algorithms using minimal codeBuild, train, and package deep RL agents for cryptocurrency and stock tradingDeploy RL agents to the cloud and edge to test them by creating desktop, web, and mobile apps and cloud servicesSpeed up agent development using distributed DNN model trainingExplore distributed deep RL architectures and discover opportunities in AIaaS (AI as a Service)Who this book is for The book is for machine learning application developers, AI and applied AI researchers, data scientists, deep learning practitioners, and students with a basic understanding of reinforcement learning concepts who want to build, train, and deploy their own reinforcement learning systems from scratch using TensorFlow 2.x.
Author |
: Simeon Kostadinov |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 115 |
Release |
: 2018-11-30 |
ISBN-10 |
: 9781789133660 |
ISBN-13 |
: 1789133661 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Recurrent Neural Networks with Python Quick Start Guide by : Simeon Kostadinov
Learn how to develop intelligent applications with sequential learning and apply modern methods for language modeling with neural network architectures for deep learning with Python's most popular TensorFlow framework. Key FeaturesTrain and deploy Recurrent Neural Networks using the popular TensorFlow libraryApply long short-term memory unitsExpand your skills in complex neural network and deep learning topicsBook Description Developers struggle to find an easy-to-follow learning resource for implementing Recurrent Neural Network (RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve results. This book will teach you the fundamentals of RNNs, with example applications in Python and the TensorFlow library. The examples are accompanied by the right combination of theoretical knowledge and real-world implementations of concepts to build a solid foundation of neural network modeling. Your journey starts with the simplest RNN model, where you can grasp the fundamentals. The book then builds on this by proposing more advanced and complex algorithms. We use them to explain how a typical state-of-the-art RNN model works. From generating text to building a language translator, we show how some of today's most powerful AI applications work under the hood. After reading the book, you will be confident with the fundamentals of RNNs, and be ready to pursue further study, along with developing skills in this exciting field. What you will learnUse TensorFlow to build RNN modelsUse the correct RNN architecture for a particular machine learning taskCollect and clear the training data for your modelsUse the correct Python libraries for any task during the building phase of your modelOptimize your model for higher accuracyIdentify the differences between multiple models and how you can substitute themLearn the core deep learning fundamentals applicable to any machine learning modelWho this book is for This book is for Machine Learning engineers and data scientists who want to learn about Recurrent Neural Network models with practical use-cases. Exposure to Python programming is required. Previous experience with TensorFlow will be helpful, but not mandatory.
Author |
: Richard S. Sutton |
Publisher |
: MIT Press |
Total Pages |
: 549 |
Release |
: 2018-11-13 |
ISBN-10 |
: 9780262352703 |
ISBN-13 |
: 0262352702 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Reinforcement Learning, second edition by : Richard S. Sutton
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Author |
: Sudharsan Ravichandiran |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 309 |
Release |
: 2018-06-28 |
ISBN-10 |
: 9781788836913 |
ISBN-13 |
: 178883691X |
Rating |
: 4/5 (13 Downloads) |
Synopsis Hands-On Reinforcement Learning with Python by : Sudharsan Ravichandiran
A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore various state-of-the-art architectures along with math Book Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence. What you will learn Understand the basics of reinforcement learning methods, algorithms, and elements Train an agent to walk using OpenAI Gym and Tensorflow Understand the Markov Decision Process, Bellman’s optimality, and TD learning Solve multi-armed-bandit problems using various algorithms Master deep learning algorithms, such as RNN, LSTM, and CNN with applications Build intelligent agents using the DRQN algorithm to play the Doom game Teach agents to play the Lunar Lander game using DDPG Train an agent to win a car racing game using dueling DQN Who this book is for If you’re a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.
Author |
: Maxim Lapan |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 547 |
Release |
: 2018-06-21 |
ISBN-10 |
: 9781788839303 |
ISBN-13 |
: 1788839307 |
Rating |
: 4/5 (03 Downloads) |
Synopsis Deep Reinforcement Learning Hands-On by : Maxim Lapan
This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems. Key Features Explore deep reinforcement learning (RL), from the first principles to the latest algorithms Evaluate high-profile RL methods, including value iteration, deep Q-networks, policy gradients, TRPO, PPO, DDPG, D4PG, evolution strategies and genetic algorithms Keep up with the very latest industry developments, including AI-driven chatbots Book Description Recent developments in reinforcement learning (RL), combined with deep learning (DL), have seen unprecedented progress made towards training agents to solve complex problems in a human-like way. Google’s use of algorithms to play and defeat the well-known Atari arcade games has propelled the field to prominence, and researchers are generating new ideas at a rapid pace. Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on ‘grid world’ environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots. What you will learn Understand the DL context of RL and implement complex DL models Learn the foundation of RL: Markov decision processes Evaluate RL methods including Cross-entropy, DQN, Actor-Critic, TRPO, PPO, DDPG, D4PG and others Discover how to deal with discrete and continuous action spaces in various environments Defeat Atari arcade games using the value iteration method Create your own OpenAI Gym environment to train a stock trading agent Teach your agent to play Connect4 using AlphaGo Zero Explore the very latest deep RL research on topics including AI-driven chatbots Who this book is for Some fluency in Python is assumed. Basic deep learning (DL) approaches should be familiar to readers and some practical experience in DL will be helpful. This book is an introduction to deep reinforcement learning (RL) and requires no background in RL.
Author |
: Miguel Morales |
Publisher |
: Manning |
Total Pages |
: 470 |
Release |
: 2020-11-10 |
ISBN-10 |
: 9781617295454 |
ISBN-13 |
: 1617295450 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Grokking Deep Reinforcement Learning by : Miguel Morales
Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback. Summary We all learn through trial and error. We avoid the things that cause us to experience pain and failure. We embrace and build on the things that give us reward and success. This common pattern is the foundation of deep reinforcement learning: building machine learning systems that explore and learn based on the responses of the environment. Grokking Deep Reinforcement Learning introduces this powerful machine learning approach, using examples, illustrations, exercises, and crystal-clear teaching. You'll love the perfectly paced teaching and the clever, engaging writing style as you dig into this awesome exploration of reinforcement learning fundamentals, effective deep learning techniques, and practical applications in this emerging field. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology We learn by interacting with our environment, and the rewards or punishments we experience guide our future behavior. Deep reinforcement learning brings that same natural process to artificial intelligence, analyzing results to uncover the most efficient ways forward. DRL agents can improve marketing campaigns, predict stock performance, and beat grand masters in Go and chess. About the book Grokking Deep Reinforcement Learning uses engaging exercises to teach you how to build deep learning systems. This book combines annotated Python code with intuitive explanations to explore DRL techniques. You’ll see how algorithms function and learn to develop your own DRL agents using evaluative feedback. What's inside An introduction to reinforcement learning DRL agents with human-like behaviors Applying DRL to complex situations About the reader For developers with basic deep learning experience. About the author Miguel Morales works on reinforcement learning at Lockheed Martin and is an instructor for the Georgia Institute of Technology’s Reinforcement Learning and Decision Making course. Table of Contents 1 Introduction to deep reinforcement learning 2 Mathematical foundations of reinforcement learning 3 Balancing immediate and long-term goals 4 Balancing the gathering and use of information 5 Evaluating agents’ behaviors 6 Improving agents’ behaviors 7 Achieving goals more effectively and efficiently 8 Introduction to value-based deep reinforcement learning 9 More stable value-based methods 10 Sample-efficient value-based methods 11 Policy-gradient and actor-critic methods 12 Advanced actor-critic methods 13 Toward artificial general intelligence
Author |
: Kai Sasaki |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 285 |
Release |
: 2019-11-27 |
ISBN-10 |
: 9781838827878 |
ISBN-13 |
: 1838827870 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Hands-On Machine Learning with TensorFlow.js by : Kai Sasaki
Hands-On Machine Learning with TensorFlow.js is a comprehensive guide that will help you easily get started with machine learning algorithms and techniques using TensorFlow.js. By the end of this book, you will be able to create and optimize your own web-based machine learning applications using practical examples.
Author |
: Michael Bernico |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 261 |
Release |
: 2018-03-09 |
ISBN-10 |
: 9781788838917 |
ISBN-13 |
: 1788838912 |
Rating |
: 4/5 (17 Downloads) |
Synopsis Deep Learning Quick Reference by : Michael Bernico
Dive deeper into neural networks and get your models trained, optimized with this quick reference guide Key Features A quick reference to all important deep learning concepts and their implementations Essential tips, tricks, and hacks to train a variety of deep learning models such as CNNs, RNNs, LSTMs, and more Supplemented with essential mathematics and theory, every chapter provides best practices and safe choices for training and fine-tuning your models in Keras and Tensorflow. Book Description Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples. You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks. By the end of this book, you will be able to solve real-world problems quickly with deep neural networks. What you will learn Solve regression and classification challenges with TensorFlow and Keras Learn to use Tensor Board for monitoring neural networks and its training Optimize hyperparameters and safe choices/best practices Build CNN's, RNN's, and LSTM's and using word embedding from scratch Build and train seq2seq models for machine translation and chat applications. Understanding Deep Q networks and how to use one to solve an autonomous agent problem. Explore Deep Q Network and address autonomous agent challenges. Who this book is for If you are a Data Scientist or a Machine Learning expert, then this book is a very useful read in training your advanced machine learning and deep learning models. You can also refer this book if you are stuck in-between the neural network modeling and need immediate assistance in getting accomplishing the task smoothly. Some prior knowledge of Python and tight hold on the basics of machine learning is required.