Tensor Numerical Methods in Quantum Chemistry

Tensor Numerical Methods in Quantum Chemistry
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 343
Release :
ISBN-10 : 9783110391374
ISBN-13 : 3110391376
Rating : 4/5 (74 Downloads)

Synopsis Tensor Numerical Methods in Quantum Chemistry by : Venera Khoromskaia

The conventional numerical methods when applied to multidimensional problems suffer from the so-called "curse of dimensionality", that cannot be eliminated by using parallel architectures and high performance computing. The novel tensor numerical methods are based on a "smart" rank-structured tensor representation of the multivariate functions and operators discretized on Cartesian grids thus reducing solution of the multidimensional integral-differential equations to 1D calculations. We explain basic tensor formats and algorithms and show how the orthogonal Tucker tensor decomposition originating from chemometrics made a revolution in numerical analysis, relying on rigorous results from approximation theory. Benefits of tensor approach are demonstrated in ab-initio electronic structure calculations. Computation of the 3D convolution integrals for functions with multiple singularities is replaced by a sequence of 1D operations, thus enabling accurate MATLAB calculations on a laptop using 3D uniform tensor grids of the size up to 1015. Fast tensor-based Hartree-Fock solver, incorporating the grid-based low-rank factorization of the two-electron integrals, serves as a prerequisite for economical calculation of the excitation energies of molecules. Tensor approach suggests efficient grid-based numerical treatment of the long-range electrostatic potentials on large 3D finite lattices with defects.The novel range-separated tensor format applies to interaction potentials of multi-particle systems of general type opening the new prospects for tensor methods in scientific computing. This research monograph presenting the modern tensor techniques applied to problems in quantum chemistry may be interesting for a wide audience of students and scientists working in computational chemistry, material science and scientific computing.

Tensor Numerical Methods in Quantum Chemistry

Tensor Numerical Methods in Quantum Chemistry
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 298
Release :
ISBN-10 : 9783110365832
ISBN-13 : 3110365839
Rating : 4/5 (32 Downloads)

Synopsis Tensor Numerical Methods in Quantum Chemistry by : Venera Khoromskaia

The conventional numerical methods when applied to multidimensional problems suffer from the so-called "curse of dimensionality", that cannot be eliminated by using parallel architectures and high performance computing. The novel tensor numerical methods are based on a "smart" rank-structured tensor representation of the multivariate functions and operators discretized on Cartesian grids thus reducing solution of the multidimensional integral-differential equations to 1D calculations. We explain basic tensor formats and algorithms and show how the orthogonal Tucker tensor decomposition originating from chemometrics made a revolution in numerical analysis, relying on rigorous results from approximation theory. Benefits of tensor approach are demonstrated in ab-initio electronic structure calculations. Computation of the 3D convolution integrals for functions with multiple singularities is replaced by a sequence of 1D operations, thus enabling accurate MATLAB calculations on a laptop using 3D uniform tensor grids of the size up to 1015. Fast tensor-based Hartree-Fock solver, incorporating the grid-based low-rank factorization of the two-electron integrals, serves as a prerequisite for economical calculation of the excitation energies of molecules. Tensor approach suggests efficient grid-based numerical treatment of the long-range electrostatic potentials on large 3D finite lattices with defects.The novel range-separated tensor format applies to interaction potentials of multi-particle systems of general type opening the new prospects for tensor methods in scientific computing. This research monograph presenting the modern tensor techniques applied to problems in quantum chemistry may be interesting for a wide audience of students and scientists working in computational chemistry, material science and scientific computing.

Tensor Numerical Methods in Scientific Computing

Tensor Numerical Methods in Scientific Computing
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 382
Release :
ISBN-10 : 9783110365917
ISBN-13 : 311036591X
Rating : 4/5 (17 Downloads)

Synopsis Tensor Numerical Methods in Scientific Computing by : Boris N. Khoromskij

The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations

Tensor Spaces and Numerical Tensor Calculus

Tensor Spaces and Numerical Tensor Calculus
Author :
Publisher : Springer Science & Business Media
Total Pages : 525
Release :
ISBN-10 : 9783642280276
ISBN-13 : 3642280277
Rating : 4/5 (76 Downloads)

Synopsis Tensor Spaces and Numerical Tensor Calculus by : Wolfgang Hackbusch

Special numerical techniques are already needed to deal with nxn matrices for large n.Tensor data are of size nxnx...xn=n^d, where n^d exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. The monograph describes the methods how tensors can be practically treated and how numerical operations can be performed. Applications are problems from quantum chemistry, approximation of multivariate functions, solution of pde, e.g., with stochastic coefficients, etc. ​

Tensor Spaces and Numerical Tensor Calculus

Tensor Spaces and Numerical Tensor Calculus
Author :
Publisher :
Total Pages : 622
Release :
ISBN-10 : 3030355551
ISBN-13 : 9783030355555
Rating : 4/5 (51 Downloads)

Synopsis Tensor Spaces and Numerical Tensor Calculus by : W. Hackbusch

This book describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of pde and more.

Tensor Spaces and Numerical Tensor Calculus

Tensor Spaces and Numerical Tensor Calculus
Author :
Publisher : Springer Nature
Total Pages : 605
Release :
ISBN-10 : 9783030355548
ISBN-13 : 3030355543
Rating : 4/5 (48 Downloads)

Synopsis Tensor Spaces and Numerical Tensor Calculus by : Wolfgang Hackbusch

Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.

Tensor Analysis and Nonlinear Tensor Functions

Tensor Analysis and Nonlinear Tensor Functions
Author :
Publisher : Springer Science & Business Media
Total Pages : 680
Release :
ISBN-10 : 9789401732215
ISBN-13 : 9401732213
Rating : 4/5 (15 Downloads)

Synopsis Tensor Analysis and Nonlinear Tensor Functions by : Yuriy I. Dimitrienko

Tensor Analysis and Nonlinear Tensor Functions embraces the basic fields of tensor calculus: tensor algebra, tensor analysis, tensor description of curves and surfaces, tensor integral calculus, the basis of tensor calculus in Riemannian spaces and affinely connected spaces, - which are used in mechanics and electrodynamics of continua, crystallophysics, quantum chemistry etc. The book suggests a new approach to definition of a tensor in space R3, which allows us to show a geometric representation of a tensor and operations on tensors. Based on this approach, the author gives a mathematically rigorous definition of a tensor as an individual object in arbitrary linear, Riemannian and other spaces for the first time. It is the first book to present a systematized theory of tensor invariants, a theory of nonlinear anisotropic tensor functions and a theory of indifferent tensors describing the physical properties of continua. The book will be useful for students and postgraduates of mathematical, mechanical engineering and physical departments of universities and also for investigators and academic scientists working in continuum mechanics, solid physics, general relativity, crystallophysics, quantum chemistry of solids and material science.

Introduction to Tensor Network Methods

Introduction to Tensor Network Methods
Author :
Publisher : Springer
Total Pages : 172
Release :
ISBN-10 : 9783030014094
ISBN-13 : 3030014096
Rating : 4/5 (94 Downloads)

Synopsis Introduction to Tensor Network Methods by : Simone Montangero

This volume of lecture notes briefly introduces the basic concepts needed in any computational physics course: software and hardware, programming skills, linear algebra, and differential calculus. It then presents more advanced numerical methods to tackle the quantum many-body problem: it reviews the numerical renormalization group and then focuses on tensor network methods, from basic concepts to gauge invariant ones. Finally, in the last part, the author presents some applications of tensor network methods to equilibrium and out-of-equilibrium correlated quantum matter. The book can be used for a graduate computational physics course. After successfully completing such a course, a student should be able to write a tensor network program and can begin to explore the physics of many-body quantum systems. The book can also serve as a reference for researchers working or starting out in the field.

Tensors-structured Numerical Methods in Scientific Computing

Tensors-structured Numerical Methods in Scientific Computing
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:930943896
ISBN-13 :
Rating : 4/5 (96 Downloads)

Synopsis Tensors-structured Numerical Methods in Scientific Computing by : Boris N. Choromskij

In the present paper, we give a survey of the recent results and outline future prospects of the tensor-structured numerical methods in applications to multidimensional problems in scientific computing. The guiding principle of the tensor methods is an approximation of multivariate functions and operators relying on certain separation of variables. Along with the traditional canonical and Tucker models, we focus on the recent quantics-TT tensor approximation method that allows to represent N-d tensors with log-volume complexity, O(dlog N). We outline how these methods can be applied in the framework of tensor truncated iteration for the solution of the high-dimensional elliptic/parabolic equations and parametric PDEs. Numerical examples demonstrate that the tensor-structured methods have proved their value in application to various computational problems arising in quantum chemistry and in the multi-dimensional/parametric FEM/BEM modelingthe tool apparently works and gives the promise for future use in challenging high-dimensional applications.