Techniques of Functional Analysis for Differential and Integral Equations

Techniques of Functional Analysis for Differential and Integral Equations
Author :
Publisher : Academic Press
Total Pages : 322
Release :
ISBN-10 : 9780128114575
ISBN-13 : 0128114576
Rating : 4/5 (75 Downloads)

Synopsis Techniques of Functional Analysis for Differential and Integral Equations by : Paul Sacks

Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics

Methods in Nonlinear Integral Equations

Methods in Nonlinear Integral Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 221
Release :
ISBN-10 : 9789401599863
ISBN-13 : 9401599866
Rating : 4/5 (63 Downloads)

Synopsis Methods in Nonlinear Integral Equations by : R Precup

Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 600
Release :
ISBN-10 : 9780387709147
ISBN-13 : 0387709142
Rating : 4/5 (47 Downloads)

Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Special Functions and Analysis of Differential Equations

Special Functions and Analysis of Differential Equations
Author :
Publisher : CRC Press
Total Pages : 405
Release :
ISBN-10 : 9781000078589
ISBN-13 : 1000078582
Rating : 4/5 (89 Downloads)

Synopsis Special Functions and Analysis of Differential Equations by : Praveen Agarwal

Differential Equations are very important tools in Mathematical Analysis. They are widely found in mathematics itself and in its applications to statistics, computing, electrical circuit analysis, dynamical systems, economics, biology, and so on. Recently there has been an increasing interest in and widely-extended use of differential equations and systems of fractional order (that is, of arbitrary order) as better models of phenomena in various physics, engineering, automatization, biology and biomedicine, chemistry, earth science, economics, nature, and so on. Now, new unified presentation and extensive development of special functions associated with fractional calculus are necessary tools, being related to the theory of differentiation and integration of arbitrary order (i.e., fractional calculus) and to the fractional order (or multi-order) differential and integral equations. This book provides learners with the opportunity to develop an understanding of advancements of special functions and the skills needed to apply advanced mathematical techniques to solve complex differential equations and Partial Differential Equations (PDEs). Subject matters should be strongly related to special functions involving mathematical analysis and its numerous applications. The main objective of this book is to highlight the importance of fundamental results and techniques of the theory of complex analysis for differential equations and PDEs and emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Specific topics include but are not limited to Partial differential equations Least squares on first-order system Sequence and series in functional analysis Special functions related to fractional (non-integer) order control systems and equations Various special functions related to generalized fractional calculus Operational method in fractional calculus Functional analysis and operator theory Mathematical physics Applications of numerical analysis and applied mathematics Computational mathematics Mathematical modeling This book provides the recent developments in special functions and differential equations and publishes high-quality, peer-reviewed book chapters in the area of nonlinear analysis, ordinary differential equations, partial differential equations, and related applications.

Computational Methods for Integral Equations

Computational Methods for Integral Equations
Author :
Publisher : CUP Archive
Total Pages : 392
Release :
ISBN-10 : 0521357969
ISBN-13 : 9780521357968
Rating : 4/5 (69 Downloads)

Synopsis Computational Methods for Integral Equations by : L. M. Delves

This textbook provides a readable account of techniques for numerical solutions.

Integral Equations

Integral Equations
Author :
Publisher : Courier Corporation
Total Pages : 256
Release :
ISBN-10 : 9780486158303
ISBN-13 : 0486158306
Rating : 4/5 (03 Downloads)

Synopsis Integral Equations by : F. G. Tricomi

Authoritative, well-written treatment of extremely useful mathematical tool with wide applications. Topics include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, more. Advanced undergraduate to graduate level. Exercises. Bibliography.

Linear Integral Equations

Linear Integral Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 327
Release :
ISBN-10 : 9781461207658
ISBN-13 : 1461207657
Rating : 4/5 (58 Downloads)

Synopsis Linear Integral Equations by : Ram P. Kanwal

This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the function g(s) is the unknown function and all the other functions are known, are integral equations. These functions may be complex-valued functions of the real variables s and t.

Volterra Integral and Functional Equations

Volterra Integral and Functional Equations
Author :
Publisher : Cambridge University Press
Total Pages : 727
Release :
ISBN-10 : 9780521372893
ISBN-13 : 0521372895
Rating : 4/5 (93 Downloads)

Synopsis Volterra Integral and Functional Equations by : G. Gripenberg

This book looks at the theories of Volterra integral and functional equations.

Integral Equations: A Practical Treatment, from Spectral Theory to Applications

Integral Equations: A Practical Treatment, from Spectral Theory to Applications
Author :
Publisher : Cambridge University Press
Total Pages : 388
Release :
ISBN-10 : 0521337429
ISBN-13 : 9780521337427
Rating : 4/5 (29 Downloads)

Synopsis Integral Equations: A Practical Treatment, from Spectral Theory to Applications by : David Porter

This book gives a rigorous and practical treatment of integral equations. These are significant because they occur in many problems in mathematics, physics and engineering and they offer a powerful (sometimes the only) technique for solving these problems. The book aims to tackle the solution of integral equations using a blend of abstract 'structural' results and more direct, down-to-earth mathematics. The interplay between these two approaches is a central feature of the text and it allows a thorough account to be given of many of the types of integral equation which arise in application areas. Since it is not always possible to find explicit solutions of the problems posed, much attention is devoted to obtaining qualitative information and approximations to the solutions, with the associated error estimates. This treatment is intended for final year mathematics undergraduates, postgraduates and research workers in application areas such as numerical analysis and fluid mechanics.

Introductory Functional Analysis with Applications

Introductory Functional Analysis with Applications
Author :
Publisher : John Wiley & Sons
Total Pages : 706
Release :
ISBN-10 : 9780471504597
ISBN-13 : 0471504599
Rating : 4/5 (97 Downloads)

Synopsis Introductory Functional Analysis with Applications by : Erwin Kreyszig

KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry