System And Data Driven Methods And Algorithms
Download System And Data Driven Methods And Algorithms full books in PDF, epub, and Kindle. Read online free System And Data Driven Methods And Algorithms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Steven L. Brunton |
Publisher |
: Cambridge University Press |
Total Pages |
: 615 |
Release |
: 2022-05-05 |
ISBN-10 |
: 9781009098489 |
ISBN-13 |
: 1009098489 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Author |
: Peter Benner |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 346 |
Release |
: 2021-11-08 |
ISBN-10 |
: 9783110497717 |
ISBN-13 |
: 3110497719 |
Rating |
: 4/5 (17 Downloads) |
Synopsis System- and Data-Driven Methods and Algorithms by : Peter Benner
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques.
Author |
: Wilhelmus H. Schilders |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 471 |
Release |
: 2008-08-27 |
ISBN-10 |
: 9783540788416 |
ISBN-13 |
: 3540788417 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Model Order Reduction: Theory, Research Aspects and Applications by : Wilhelmus H. Schilders
The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.
Author |
: Jose Nathan Kutz |
Publisher |
: |
Total Pages |
: 657 |
Release |
: 2013-08-08 |
ISBN-10 |
: 9780199660339 |
ISBN-13 |
: 0199660336 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Data-Driven Modeling & Scientific Computation by : Jose Nathan Kutz
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Author |
: J. Nathan Kutz |
Publisher |
: SIAM |
Total Pages |
: 241 |
Release |
: 2016-11-23 |
ISBN-10 |
: 9781611974492 |
ISBN-13 |
: 1611974496 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Dynamic Mode Decomposition by : J. Nathan Kutz
Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.
Author |
: Peter Benner |
Publisher |
: Walter de Gruyter GmbH & Co KG |
Total Pages |
: 369 |
Release |
: 2020-12-16 |
ISBN-10 |
: 9783110671506 |
ISBN-13 |
: 3110671506 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Snapshot-Based Methods and Algorithms by : Peter Benner
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
Author |
: Marian Bubak |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 1376 |
Release |
: 2004-05-26 |
ISBN-10 |
: 9783540221166 |
ISBN-13 |
: 3540221166 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Computational Science — ICCS 2004 by : Marian Bubak
The International Conference on Computational Science (ICCS 2004) held in Krak ́ ow, Poland, June 6–9, 2004, was a follow-up to the highly successful ICCS 2003 held at two locations, in Melbourne, Australia and St. Petersburg, Russia; ICCS 2002 in Amsterdam, The Netherlands; and ICCS 2001 in San Francisco, USA. As computational science is still evolving in its quest for subjects of inves- gation and e?cient methods, ICCS 2004 was devised as a forum for scientists from mathematics and computer science, as the basic computing disciplines and application areas, interested in advanced computational methods for physics, chemistry, life sciences, engineering, arts and humanities, as well as computer system vendors and software developers. The main objective of this conference was to discuss problems and solutions in all areas, to identify new issues, to shape future directions of research, and to help users apply various advanced computational techniques. The event harvested recent developments in com- tationalgridsandnextgenerationcomputingsystems,tools,advancednumerical methods, data-driven systems, and novel application ?elds, such as complex - stems, ?nance, econo-physics and population evolution.
Author |
: Frederica Darema |
Publisher |
: Springer Nature |
Total Pages |
: 356 |
Release |
: 2020-11-02 |
ISBN-10 |
: 9783030617257 |
ISBN-13 |
: 3030617254 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Dynamic Data Driven Applications Systems by : Frederica Darema
This book constitutes the refereed proceedings of the Third International Conference on Dynamic Data Driven Application Systems, DDDAS 2020, held in Boston, MA, USA, in October 2020. The 21 full papers and 14 short papers presented in this volume were carefully reviewed and selected from 40 submissions. They cover topics such as: digital twins; environment cognizant adaptive-planning systems; energy systems; materials systems; physics-based systems analysis; imaging methods and systems; and learning systems.
Author |
: Dzejla Medjedovic |
Publisher |
: Simon and Schuster |
Total Pages |
: 302 |
Release |
: 2022-08-16 |
ISBN-10 |
: 9781638356561 |
ISBN-13 |
: 1638356564 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Algorithms and Data Structures for Massive Datasets by : Dzejla Medjedovic
Massive modern datasets make traditional data structures and algorithms grind to a halt. This fun and practical guide introduces cutting-edge techniques that can reliably handle even the largest distributed datasets. In Algorithms and Data Structures for Massive Datasets you will learn: Probabilistic sketching data structures for practical problems Choosing the right database engine for your application Evaluating and designing efficient on-disk data structures and algorithms Understanding the algorithmic trade-offs involved in massive-scale systems Deriving basic statistics from streaming data Correctly sampling streaming data Computing percentiles with limited space resources Algorithms and Data Structures for Massive Datasets reveals a toolbox of new methods that are perfect for handling modern big data applications. You’ll explore the novel data structures and algorithms that underpin Google, Facebook, and other enterprise applications that work with truly massive amounts of data. These effective techniques can be applied to any discipline, from finance to text analysis. Graphics, illustrations, and hands-on industry examples make complex ideas practical to implement in your projects—and there’s no mathematical proofs to puzzle over. Work through this one-of-a-kind guide, and you’ll find the sweet spot of saving space without sacrificing your data’s accuracy. About the technology Standard algorithms and data structures may become slow—or fail altogether—when applied to large distributed datasets. Choosing algorithms designed for big data saves time, increases accuracy, and reduces processing cost. This unique book distills cutting-edge research papers into practical techniques for sketching, streaming, and organizing massive datasets on-disk and in the cloud. About the book Algorithms and Data Structures for Massive Datasets introduces processing and analytics techniques for large distributed data. Packed with industry stories and entertaining illustrations, this friendly guide makes even complex concepts easy to understand. You’ll explore real-world examples as you learn to map powerful algorithms like Bloom filters, Count-min sketch, HyperLogLog, and LSM-trees to your own use cases. What's inside Probabilistic sketching data structures Choosing the right database engine Designing efficient on-disk data structures and algorithms Algorithmic tradeoffs in massive-scale systems Computing percentiles with limited space resources About the reader Examples in Python, R, and pseudocode. About the author Dzejla Medjedovic earned her PhD in the Applied Algorithms Lab at Stony Brook University, New York. Emin Tahirovic earned his PhD in biostatistics from University of Pennsylvania. Illustrator Ines Dedovic earned her PhD at the Institute for Imaging and Computer Vision at RWTH Aachen University, Germany. Table of Contents 1 Introduction PART 1 HASH-BASED SKETCHES 2 Review of hash tables and modern hashing 3 Approximate membership: Bloom and quotient filters 4 Frequency estimation and count-min sketch 5 Cardinality estimation and HyperLogLog PART 2 REAL-TIME ANALYTICS 6 Streaming data: Bringing everything together 7 Sampling from data streams 8 Approximate quantiles on data streams PART 3 DATA STRUCTURES FOR DATABASES AND EXTERNAL MEMORY ALGORITHMS 9 Introducing the external memory model 10 Data structures for databases: B-trees, Bε-trees, and LSM-trees 11 External memory sorting
Author |
: Didier Theilliol |
Publisher |
: Springer Nature |
Total Pages |
: 352 |
Release |
: 2023-07-15 |
ISBN-10 |
: 9783031275401 |
ISBN-13 |
: 3031275403 |
Rating |
: 4/5 (01 Downloads) |
Synopsis Recent Developments in Model-Based and Data-Driven Methods for Advanced Control and Diagnosis by : Didier Theilliol
The book consists of recent works on several axes either with a more theoretical nature or with a focus on applications, which will span a variety of up-to-date topics in the field of systems and control. The main market area of the contributions include: Advanced fault-tolerant control, control reconfiguration, health monitoring techniques for industrial systems, data-driven diagnosis methods, process supervision, diagnosis and control of discrete-event systems, maintenance and repair strategies, statistical methods for fault diagnosis, reliability and safety of industrial systems artificial intelligence methods for control and diagnosis, health-aware control design strategies, advanced control approaches, deep learning-based methods for control and diagnosis, reinforcement learning-based approaches for advanced control, diagnosis and prognosis techniques applied to industrial problems, Industry 4.0 as well as instrumentation and sensors. These works constitute advances in the aforementioned scientific fields and will be used by graduate as well as doctoral students along with established researchers to update themselves with the state of the art and recent advances in their respective fields. As the book includes several applicative studies with several multi-disciplinary contributions (deep learning, reinforcement learning, model-based/data-based control etc.), the book proves to be equally useful for the practitioners as well industrial professionals.