Symmetric Functions and Combinatorial Operators on Polynomials

Symmetric Functions and Combinatorial Operators on Polynomials
Author :
Publisher : American Mathematical Soc.
Total Pages : 282
Release :
ISBN-10 : 9780821828717
ISBN-13 : 0821828711
Rating : 4/5 (17 Downloads)

Synopsis Symmetric Functions and Combinatorial Operators on Polynomials by : Alain Lascoux

The theory of symmetric functions is an old topic in mathematics, which is used as an algebraic tool in many classical fields. With $\lambda$-rings, one can regard symmetric functions as operators on polynomials and reduce the theory to just a handful of fundamental formulas. One of the main goals of the book is to describe the technique of $\lambda$-rings. The main applications of this technique to the theory of symmetric functions are related to the Euclid algorithm and its occurrence in division, continued fractions, Pade approximants, and orthogonal polynomials. Putting the emphasis on the symmetric group instead of symmetric functions, one can extend the theory to non-symmetric polynomials, with Schur functions being replaced by Schubert polynomials. In two independent chapters, the author describes the main properties of these polynomials, following either the approach of Newton and interpolation methods, or the method of Cauchy and the diagonalization of a kernel generalizing the resultant. The last chapter sketches a non-commutative version of symmetric functions, with the help of Young tableaux and the plactic monoid. The book also contains numerous exercises clarifying and extending many points of the main text.

Current Trends in Symmetric Polynomials with Their Applications Ⅱ

Current Trends in Symmetric Polynomials with Their Applications Ⅱ
Author :
Publisher : MDPI
Total Pages : 206
Release :
ISBN-10 : 9783036503608
ISBN-13 : 3036503609
Rating : 4/5 (08 Downloads)

Synopsis Current Trends in Symmetric Polynomials with Their Applications Ⅱ by : Taekyun Kim

The special issue contains research papers with various topics in many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theory, methods, and their application based on current and recent developing symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and contains the most recent advances made in the area of symmetric functions and polynomials.

The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics

The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics
Author :
Publisher : American Mathematical Soc.
Total Pages : 178
Release :
ISBN-10 : 9780821844113
ISBN-13 : 0821844113
Rating : 4/5 (13 Downloads)

Synopsis The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics by : James Haglund

This work contains detailed descriptions of developments in the combinatorics of the space of diagonal harmonics, a topic at the forefront of current research in algebraic combinatorics. These developments have led in turn to some surprising discoveries in the combinatorics of Macdonald polynomials.

Symmetric Functions and Hall Polynomials

Symmetric Functions and Hall Polynomials
Author :
Publisher : Oxford University Press
Total Pages : 496
Release :
ISBN-10 : 0198504500
ISBN-13 : 9780198504504
Rating : 4/5 (00 Downloads)

Synopsis Symmetric Functions and Hall Polynomials by : Ian Grant Macdonald

This reissued classic text is the acclaimed second edition of Professor Ian Macdonald's groundbreaking monograph on symmetric functions and Hall polynomials. The first edition was published in 1979, before being significantly expanded into the present edition in 1995. This text is widely regarded as the best source of information on Hall polynomials and what have come to be known as Macdonald polynomials, central to a number of key developments in mathematics and mathematical physics in the 21st century Macdonald polynomials gave rise to the subject of double affine Hecke algebras (or Cherednik algebras) important in representation theory. String theorists use Macdonald polynomials to attack the so-called AGT conjectures. Macdonald polynomials have been recently used to construct knot invariants. They are also a central tool for a theory of integrable stochastic models that have found a number of applications in probability, such as random matrices, directed polymers in random media, driven lattice gases, and so on. Macdonald polynomials have become a part of basic material that a researcher simply must know if (s)he wants to work in one of the above domains, ensuring this new edition will appeal to a very broad mathematical audience. Featuring a new foreword by Professor Richard Stanley of MIT.

Unitary Symmetry and Combinatorics

Unitary Symmetry and Combinatorics
Author :
Publisher : World Scientific
Total Pages : 642
Release :
ISBN-10 : 9789812814722
ISBN-13 : 9812814728
Rating : 4/5 (22 Downloads)

Synopsis Unitary Symmetry and Combinatorics by : James D. Louck

Notation -- Quantum angular momentum -- Composite systems -- Graphs and adjacency diagrams -- Generating functions -- The D[lambda] polynomials: form -- Operator actions in Hilbert space -- The D[lambda] polynomials: structure -- The general linear and unitary groups -- Tensor operator theory -- Compendium A. Basic algebraic objects -- Compendium B. Combinatorial objects.

Special Functions

Special Functions
Author :
Publisher : Cambridge University Press
Total Pages : 684
Release :
ISBN-10 : 0521789885
ISBN-13 : 9780521789882
Rating : 4/5 (85 Downloads)

Synopsis Special Functions by : George E. Andrews

An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.

Affine Hecke Algebras and Orthogonal Polynomials

Affine Hecke Algebras and Orthogonal Polynomials
Author :
Publisher : Cambridge University Press
Total Pages : 200
Release :
ISBN-10 : 0521824729
ISBN-13 : 9780521824729
Rating : 4/5 (29 Downloads)

Synopsis Affine Hecke Algebras and Orthogonal Polynomials by : I. G. Macdonald

First account of a theory, created by Macdonald, of a class of orthogonal polynomial, which is related to mathematical physics.

Algebra and Applications 2

Algebra and Applications 2
Author :
Publisher : John Wiley & Sons
Total Pages : 338
Release :
ISBN-10 : 9781789450187
ISBN-13 : 1789450187
Rating : 4/5 (87 Downloads)

Synopsis Algebra and Applications 2 by : Abdenacer Makhlouf

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored. Algebra and Applications 2 is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebraic Combinatorics and Coinvariant Spaces

Algebraic Combinatorics and Coinvariant Spaces
Author :
Publisher : CRC Press
Total Pages : 227
Release :
ISBN-10 : 9781439865071
ISBN-13 : 1439865078
Rating : 4/5 (71 Downloads)

Synopsis Algebraic Combinatorics and Coinvariant Spaces by : Francois Bergeron

Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and

Wave Packet Analysis

Wave Packet Analysis
Author :
Publisher : American Mathematical Soc.
Total Pages : 97
Release :
ISBN-10 : 9780821836613
ISBN-13 : 0821836617
Rating : 4/5 (13 Downloads)

Synopsis Wave Packet Analysis by : Christoph Thiele

The concept of ``wave packet analysis'' originates in Carleson's famous proof of almost everywhere convergence of Fourier series of $L2$ functions. It was later used by Lacey and Thiele to prove bounds on the bilinear Hilbert transform. For quite some time, Carleson's wave packet analysis was thought to be an important idea, but that it had limited applications. But in recent years, it has become clear that this is an important tool for a number of other applications. This book isan introduction to these tools. It emphasizes the classical successes (Carleson's theorem and the Hilbert transform) in the main development. However, the book closes with a dedicated chapter on more recent results. Carleson's original theorem is sometimes cited as one of the most importantdevelopments of 20th century harmonic analysis. The set of ideas stemming from his proof is now seen as an essential element in modern harmonic analysis. Indeed, Thiele won the Salem prize jointly with Michael Lacey for work in this area. The book gives a nice survey of important material, such as an overview of the theory of singular integrals and wave packet analysis itself. There is a separate chapter on ``further developments'', which gives a broader view on the subject, though it does notexhaust all ongoing developments.