Sub-structure Coupling for Dynamic Analysis

Sub-structure Coupling for Dynamic Analysis
Author :
Publisher : Springer
Total Pages : 231
Release :
ISBN-10 : 9783030128197
ISBN-13 : 3030128199
Rating : 4/5 (97 Downloads)

Synopsis Sub-structure Coupling for Dynamic Analysis by : Hector Jensen

This book combines a model reduction technique with an efficient parametrization scheme for the purpose of solving a class of complex and computationally expensive simulation-based problems involving finite element models. These problems, which have a wide range of important applications in several engineering fields, include reliability analysis, structural dynamic simulation, sensitivity analysis, reliability-based design optimization, Bayesian model validation, uncertainty quantification and propagation, etc. The solution of this type of problems requires a large number of dynamic re-analyses. To cope with this difficulty, a model reduction technique known as substructure coupling for dynamic analysis is considered. While the use of reduced order models alleviates part of the computational effort, their repetitive generation during the simulation processes can be computational expensive due to the substantial computational overhead that arises at the substructure level. In this regard, an efficient finite element model parametrization scheme is considered. When the division of the structural model is guided by such a parametrization scheme, the generation of a small number of reduced order models is sufficient to run the large number of dynamic re-analyses. Thus, a drastic reduction in computational effort is achieved without compromising the accuracy of the results. The capabilities of the developed procedures are demonstrated in a number of simulation-based problems involving uncertainty.

Sub-structure Coupling for Dynamic Analysis

Sub-structure Coupling for Dynamic Analysis
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 3030128202
ISBN-13 : 9783030128203
Rating : 4/5 (02 Downloads)

Synopsis Sub-structure Coupling for Dynamic Analysis by : Hector Jensen

This book combines a model reduction technique with an efficient parametrization scheme for the purpose of solving a class of complex and computationally expensive simulation-based problems involving finite element models. These problems, which have a wide range of important applications in several engineering fields, include reliability analysis, structural dynamic simulation, sensitivity analysis, reliability-based design optimization, Bayesian model validation, uncertainty quantification and propagation, etc. The solution of this type of problems requires a large number of dynamic re-analyses. To cope with this difficulty, a model reduction technique known as substructure coupling for dynamic analysis is considered. While the use of reduced order models alleviates part of the computational effort, their repetitive generation during the simulation processes can be computational expensive due to the substantial computational overhead that arises at the substructure level. In this regard, an efficient finite element model parametrization scheme is considered. When the division of the structural model is guided by such a parametrization scheme, the generation of a small number of reduced order models is sufficient to run the large number of dynamic re-analyses. Thus, a drastic reduction in computational effort is achieved without compromising the accuracy of the results. The capabilities of the developed procedures are demonstrated in a number of simulation-based problems involving uncertainty.

Dynamic Stiffness and Substructures

Dynamic Stiffness and Substructures
Author :
Publisher : Springer Science & Business Media
Total Pages : 248
Release :
ISBN-10 : 9781447120261
ISBN-13 : 1447120264
Rating : 4/5 (61 Downloads)

Synopsis Dynamic Stiffness and Substructures by : Andrew Y.T. Leung

Dynamic Stiffness and Substructures models a complex dynamic system and offers a solution to the advanced dynamical problem associated with the effects of wind and earthquakes on structures. Since the system matrices are inevitably frequency dependant, those are exclusively considered in this publication. The relation between the frequency matrices by the Leung's theorem is most important in the development of efficient algorithms for the natural modes. This new approach was developed by the author over the past 15 years. It offers practising engineers and researchers a wide choice for structural modelling and analysis. Abundant numerical examples enable the reader to understand the theorem and to apply the methods.