Structure and Organic Matter Storage in Agricultural Soils

Structure and Organic Matter Storage in Agricultural Soils
Author :
Publisher : CRC Press
Total Pages : 502
Release :
ISBN-10 : 1566700337
ISBN-13 : 9781566700337
Rating : 4/5 (37 Downloads)

Synopsis Structure and Organic Matter Storage in Agricultural Soils by : M.R. Carter

Soils comprise the largest pool of terrestrial carbon and therefore are an important component of carbon storage in the biosphere-atmosphere system. Structure and Organic Matter Storage in Agricultural Soils explores the mechanisms and processes involved in the storage and sequestration of carbon in soils. Focusing on agricultural soils - from tropical to semi-arid types - this new book provides an in-depth look at structure, aggregation, and organic matter retention in world soils. The first two sections of the book introduce readers to the basic issues and scientific concepts, including soil structure, underlying mechanisms and processes, and the importance of agroecosystems as carbon regulators. The third section provides detailed discussions of soil aggregation and organic matter storage under various climates, soil types, and soil management practices. The fourth section addresses current strategies for enhancing organic matter storage in soil, modelling techniques, and measurement methods. Throughout the book, the importance of the soil structure-organic matter storage relationship is emphasized. Anyone involved in soil science, agriculture, agronomy, plant science, or greenhouse gas and global change studies should understand this relationship. Structure and Organic Matter Storage in Agricultural Soils provides an ideal source of information not only on the soil structure-storage relationship itself, but also on key research efforts and direct applications related to the storage of organic matter in agricultural soils.

Structure and Organic Matter Storage in Agricultural Soils

Structure and Organic Matter Storage in Agricultural Soils
Author :
Publisher : CRC Press
Total Pages : 496
Release :
ISBN-10 : 0367448831
ISBN-13 : 9780367448837
Rating : 4/5 (31 Downloads)

Synopsis Structure and Organic Matter Storage in Agricultural Soils by : M.R. Carter

Soils comprise the largest pool of terrestrial carbon and therefore are an important component of carbon storage in the biosphere-atmosphere system. Structure and Organic Matter Storage in Agricultural Soils explores the mechanisms and processes involved in the storage and sequestration of carbon in soils. Focusing on agricultural soils - from tropical to semi-arid types - this new book provides an in-depth look at structure, aggregation, and organic matter retention in world soils. The first two sections of the book introduce readers to the basic issues and scientific concepts, including soil structure, underlying mechanisms and processes, and the importance of agroecosystems as carbon regulators. The third section provides detailed discussions of soil aggregation and organic matter storage under various climates, soil types, and soil management practices. The fourth section addresses current strategies for enhancing organic matter storage in soil, modelling techniques, and measurement methods. Throughout the book, the importance of the soil structure-organic matter storage relationship is emphasized. Anyone involved in soil science, agriculture, agronomy, plant science, or greenhouse gas and global change studies should understand this relationship. Structure and Organic Matter Storage in Agricultural Soils provides an ideal source of information not only on the soil structure-storage relationship itself, but also on key research efforts and direct applications related to the storage of organic matter in agricultural soils.

Soil Carbon Storage

Soil Carbon Storage
Author :
Publisher : Academic Press
Total Pages : 341
Release :
ISBN-10 : 9780128127674
ISBN-13 : 0128127678
Rating : 4/5 (74 Downloads)

Synopsis Soil Carbon Storage by : Brajesh Singh

Soil Carbon Storage: Modulators, Mechanisms and Modeling takes a novel approach to the issue of soil carbon storage by considering soil C sequestration as a function of the interaction between biotic (e.g. microbes and plants) and abiotic (climate, soil types, management practices) modulators as a key driver of soil C. These modulators are central to C balance through their processing of C from both plant inputs and native soil organic matter. This book considers this concept in the light of state-of-the-art methodologies that elucidate these interactions and increase our understanding of a vitally important, but poorly characterized component of the global C cycle. The book provides soil scientists with a comprehensive, mechanistic, quantitative and predictive understanding of soil carbon storage. It presents a new framework that can be included in predictive models and management practices for better prediction and enhanced C storage in soils. - Identifies management practices to enhance storage of soil C under different agro-ecosystems, soil types and climatic conditions - Provides novel conceptual frameworks of biotic (especially microbial) and abiotic data to improve prediction of simulation model at plot to global scale - Advances the conceptual framework needed to support robust predictive models and sustainable land management practices

Structure and Organic Matter Storage in Agricultural Soils

Structure and Organic Matter Storage in Agricultural Soils
Author :
Publisher : CRC Press
Total Pages : 488
Release :
ISBN-10 : 9781000114676
ISBN-13 : 1000114678
Rating : 4/5 (76 Downloads)

Synopsis Structure and Organic Matter Storage in Agricultural Soils by : M.R. Carter

Soils comprise the largest pool of terrestrial carbon and therefore are an important component of carbon storage in the biosphere-atmosphere system. Structure and Organic Matter Storage in Agricultural Soils explores the mechanisms and processes involved in the storage and sequestration of carbon in soils. Focusing on agricultural soils - from tropical to semi-arid types - this new book provides an in-depth look at structure, aggregation, and organic matter retention in world soils. The first two sections of the book introduce readers to the basic issues and scientific concepts, including soil structure, underlying mechanisms and processes, and the importance of agroecosystems as carbon regulators. The third section provides detailed discussions of soil aggregation and organic matter storage under various climates, soil types, and soil management practices. The fourth section addresses current strategies for enhancing organic matter storage in soil, modelling techniques, and measurement methods. Throughout the book, the importance of the soil structure-organic matter storage relationship is emphasized. Anyone involved in soil science, agriculture, agronomy, plant science, or greenhouse gas and global change studies should understand this relationship. Structure and Organic Matter Storage in Agricultural Soils provides an ideal source of information not only on the soil structure-storage relationship itself, but also on key research efforts and direct applications related to the storage of organic matter in agricultural soils.

Advances in Soil Organic Matter Research

Advances in Soil Organic Matter Research
Author :
Publisher : Woodhead Publishing
Total Pages : 411
Release :
ISBN-10 : 9781845692742
ISBN-13 : 1845692748
Rating : 4/5 (42 Downloads)

Synopsis Advances in Soil Organic Matter Research by : W S Wilson

The papers in this volume provide a balanced account of developments in soil organic matter research. It focuses on composition and structure, water quality, organic matter turnover, humus quality and fertility, and is essential reading for all those concerned with the environmental aspects of soil conservation and improvement.

The Importance of Soil Organic Matter

The Importance of Soil Organic Matter
Author :
Publisher : Food & Agriculture Org.
Total Pages : 96
Release :
ISBN-10 : 9251053669
ISBN-13 : 9789251053669
Rating : 4/5 (69 Downloads)

Synopsis The Importance of Soil Organic Matter by : Alexandra Bot

Soil organic matter - the product of on-site biological decomposition - affects the chemical and physical properties of the soil and its overall health. Its composition and breakdown rate affect: the soil structure and porosity; the water infiltration rate and moisture holding capacity of soils; the diversity and biological activity of soil organisms; and plant nutrient availability. This document concentrates on the organic matter dynamics of cropping soils and discusses the circumstances that deplete organic matter and their negative outcomes. It then moves on to more proactive solutions. It reviews a "basket" of practices in order to show how they can increase organic matter content and discusses the land and cropping benefits that then accrue.--Publisher's description.

The Nature, Distribution and Significance of Organic Carbon Within Structurally Intact Soils Contrasting in Total SOC Content

The Nature, Distribution and Significance of Organic Carbon Within Structurally Intact Soils Contrasting in Total SOC Content
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:1064979322
ISBN-13 :
Rating : 4/5 (22 Downloads)

Synopsis The Nature, Distribution and Significance of Organic Carbon Within Structurally Intact Soils Contrasting in Total SOC Content by : Katie Elizabeth Smith

Soil structure influences many chemical, biological and physical processes and it is well established that organic carbon acts as a soil binding agent. However, the precise location of organic matter and carbon in relation to structural features within intact samples is unknown. The sensitivity of organic carbon to decomposition is dependent not only upon its intrinsic chemical recalcitrance, but also its location within the soil structure. Soil structure provides organic carbon with chemical and physical protection, the extent of which varies between structural units. Furthermore soil structure is transient, and is sensitive to both environmental changes and physical disturbance, therefore it is difficult to determine and quantify the impact of this dynamic entity upon the storage of organic carbon. To date the majority of research that has advanced our understanding of the role soil structure plays in the storage of organic carbon, has relied upon some form of fractionation technique to separate aggregates from the bulk soil. However this approach has its disadvantages as much of the soil structure is destroyed; clearly when studying the impact of soil structure upon organic carbon-storage it is advantageous to implement any method that minimises disturbance to the soil structure. This study entails removing intact soil samples (through the use of kubiena tins) from long-term agricultural experimental fields at Rothamsted Research, (Hertfordshire, UK) with the aim of comparing and evaluating the location of organic matter and it's associated organic carbon, in soils with contrasting organic carbon contents and a well documented land-use history. Thin sections will be analysed by integrating conventional micromorphology, image analysis and sub-microscopy combined with microscale chemical analysis scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). In doing so a new alternative method for analysing the distribution of organic matter and organic carbon is proposed. It was found that agricultural soils, which are the same in all aspects except total-OC content, differ in total organic matter, water release characteristics, aggregate stability and pore size distribution; therefore these differences could be attributed to the relationship between OC and soil structure. The water release curve, aggregate stability and pore size distribution also differed between soils with similar OC-contents but from different land-uses. The analysis of organic matter within intact soil samples provided evidence for the redistribution of organic matter as it is decomposed within the soil structure, for instance, less decomposed organ and tissue forms were located in or near to soil pores while more decomposed amorphous forms were located within the soil matrix. Since the same pattern of redistribution was observed in both agricultural and grassland soil this is likely to be directed by soil macro and micro fauna. It is concluded that since the location of different forms of organic matter is consistent across all soil, organic matter location is not responsible for creating differences in aggregate stability between treatments. Instead the results indicate that the amount and strength of organic carbon bonds and its hydrophobic properties are responsible. Micromorphology results demonstrated an absence of defined aggregation between treatments. Despite the difficulties in the interpretation of aggregation, the results contradict theories of aggregation, which state that aggregates are formed around "fresh" organic matter and it is argued that OM will undergo substantial decomposition before it acts as core for aggregation. Initial SEM-EDS analysis, has shown that in the soil matrix adjacent to organic matter (plant/organ) fragments there is a heightened concentration of C, indicating that these fragments are acting as a source of organic carbon. Interestingly BC, which represent one of the most recalcitrant C forms is also acting as a source of C, although these initial results suggest to a lesser extent than more labile C-sources. This source of organic carbon could stimulate microbial activity thereby enhancing soil structural stability. Alternatively, the release of liable carbon into soil pores may represent one route by which labile carbon enters sub-soil horizons.

Soil Management and Climate Change

Soil Management and Climate Change
Author :
Publisher : Academic Press
Total Pages : 398
Release :
ISBN-10 : 9780128121290
ISBN-13 : 0128121297
Rating : 4/5 (90 Downloads)

Synopsis Soil Management and Climate Change by : Maria Angeles Munoz

Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions provides a state of the art overview of recent findings and future research challenges regarding physical, chemical and biological processes controlling soil carbon, nitrogen dynamic and greenhouse gas emissions from soils. This book is for students and academics in soil science and environmental science, land managers, public administrators and legislators, and will increase understanding of organic matter preservation in soil and mitigation of greenhouse gas emissions. Given the central role soil plays on the global carbon (C) and nitrogen (N) cycles and its impact on greenhouse gas emissions, there is an urgent need to increase our common understanding about sources, mechanisms and processes that regulate organic matter mineralization and stabilization, and to identify those management practices and processes which mitigate greenhouse gas emissions, helping increase organic matter stabilization with suitable supplies of available N. - Provides the latest findings about soil organic matter stabilization and greenhouse gas emissions - Covers the effect of practices and management on soil organic matter stabilization - Includes information for readers to select the most suitable management practices to increase soil organic matter stabilization

Soil Organic Matter in Temperate AgroecosystemsLong Term Experiments in North America

Soil Organic Matter in Temperate AgroecosystemsLong Term Experiments in North America
Author :
Publisher : CRC Press
Total Pages : 436
Release :
ISBN-10 : 0849328020
ISBN-13 : 9780849328022
Rating : 4/5 (20 Downloads)

Synopsis Soil Organic Matter in Temperate AgroecosystemsLong Term Experiments in North America by : Eldor A. Paul

The presence - or absence - of soil organic matter (SOM) has important implications for agricultural productivity. It could also have significant implications for global climate due to its role as a source/sink of carbon. Therefore, it is important to understand the issues related to the accumulation or loss of SOM, to use what we have learned from experiments to make sound decisions about soil and crop management, and to test models and future concepts concerning SOM management. A database is included with the book, presenting tabular data for 34 sites in North America. Soil Organic Matter in Temperate Agroecosystems discusses all of these issues and more, answering such questions as:

The Nature, Distribution and Significance of Organic Carbon Within Structurally Intact Soils Contrasting in Total Organic Carbon Content

The Nature, Distribution and Significance of Organic Carbon Within Structurally Intact Soils Contrasting in Total Organic Carbon Content
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:757132670
ISBN-13 :
Rating : 4/5 (70 Downloads)

Synopsis The Nature, Distribution and Significance of Organic Carbon Within Structurally Intact Soils Contrasting in Total Organic Carbon Content by : Katie E. Smith

Soil structure influences many chemical, biological and physical processes and it is well established that organic carbon acts as a soil binding agent. However, the precise location of organic matter and carbon in relation to structural features within intact samples is unknown. The sensitivity of organic carbon to decomposition is dependent not only upon its intrinsic chemical recalcitrance, but also its location within the soil structure. Soil structure provides organic carbon with chemical and physical protection, the extent of which varies between structural units. Furthermore soil structure is transient, and is sensitive to both environmental changes and physical disturbance, therefore it is difficult to determine and quantify the impact of this dynamic entity upon the storage of organic carbon. To date the majority of research that has advanced our understanding of the role soil structure plays in the storage of organic carbon, has relied upon some form of fractionation technique to separate aggregates from the bulk soil. However this approach has its disadvantages as much of the soil structure is destroyed; clearly when studying the impact of soil structure upon organic carbon-storage it is advantageous to implement any method that minimises disturbance to the soil structure. This study entails removing intact soil samples (through the use of kubiena tins) from long-term agricultural experimental fields at Rothamsted Research, (Hertfordshire, UK) with the aim of comparing and evaluating the location of organic matter and it?s associated organic carbon, in soils with contrasting organic carbon contents and a well documented land-use history. Thin sections will be analysed by integrating conventional micromorphology, image analysis and sub-microscopy combined with microscale chemical analysis scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). In doing so a new alternative method for analysing the distribution of organic matter and organic carbon is proposed. It was found that agricultural soils, which are the same in all aspects except total-OC content, differ in total organic matter, water release characteristics, aggregate stability and pore size distribution; therefore these differences could be attributed to the relationship between OC and soil structure. The water release curve, aggregate stability and pore size distribution also differed between soils with similar OC-contents but from different land-uses. The analysis of organic matter within intact soil samples provided evidence for the redistribution of organic matter as it is decomposed within the soil structure, for instance, less decomposed organ and tissue forms were located in or near to soil pores while more decomposed amorphous forms were located within the soil matrix. Since the same pattern of redistribution was observed in both agricultural and grassland soil this is likely to be directed by soil macro and micro fauna. It is concluded that since the location of different forms of organic matter is consistent across all soil, organic matter location is not responsible for creating differences in aggregate stability between treatments. Instead the results indicate that the amount and strength of organic carbon bonds and its hydrophobic properties are responsible. Micromorphology results demonstrated an absence of defined aggregation between treatments. Despite the difficulties in the interpretation of aggregation, the results contradict theories of aggregation, which state that aggregates are formed around?fresh? organic matter and it is argued that OM will undergo substantial decomposition before it acts as core for aggregation. Initial SEM-EDS analysis, has shown that in the soil matrix adjacent to organic matter (plant/organ) fragments there is a heightened concentration of C, indicating that these fragments are acting as a source of organic carbon. Interestingly BC, which represent one of the most recalcitrant C forms is also acting as a source of C, although these initial results suggest to a lesser extent than more labile C-sources. This source of organic carbon could stimulate microbial activity thereby enhancing soil structural stability. Alternatively, the release of liable carbon into soil pores may represent one route by which labile carbon enters sub-soil horizons.