Streaming Data Mesh

Streaming Data Mesh
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 226
Release :
ISBN-10 : 9781098130695
ISBN-13 : 1098130693
Rating : 4/5 (95 Downloads)

Synopsis Streaming Data Mesh by : Hubert Dulay

Data lakes and warehouses have become increasingly fragile, costly, and difficult to maintain as data gets bigger and moves faster. Data meshes can help your organization decentralize data, giving ownership back to the engineers who produced it. This book provides a concise yet comprehensive overview of data mesh patterns for streaming and real-time data services. Authors Hubert Dulay and Stephen Mooney examine the vast differences between streaming and batch data meshes. Data engineers, architects, data product owners, and those in DevOps and MLOps roles will learn steps for implementing a streaming data mesh, from defining a data domain to building a good data product. Through the course of the book, you'll create a complete self-service data platform and devise a data governance system that enables your mesh to work seamlessly. With this book, you will: Design a streaming data mesh using Kafka Learn how to identify a domain Build your first data product using self-service tools Apply data governance to the data products you create Learn the differences between synchronous and asynchronous data services Implement self-services that support decentralized data

Streaming Data Mesh

Streaming Data Mesh
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 230
Release :
ISBN-10 : 9781098130688
ISBN-13 : 1098130685
Rating : 4/5 (88 Downloads)

Synopsis Streaming Data Mesh by : Hubert Dulay

Data lakes and warehouses have become increasingly fragile, costly, and difficult to maintain as data gets bigger and moves faster. Data meshes can help your organization decentralize data, giving ownership back to the engineers who produced it. This book provides a concise yet comprehensive overview of data mesh patterns for streaming and real-time data services. Authors Hubert Dulay and Stephen Mooney examine the vast differences between streaming and batch data meshes. Data engineers, architects, data product owners, and those in DevOps and MLOps roles will learn steps for implementing a streaming data mesh, from defining a data domain to building a good data product. Through the course of the book, you'll create a complete self-service data platform and devise a data governance system that enables your mesh to work seamlessly. With this book, you will: Design a streaming data mesh using Kafka Learn how to identify a domain Build your first data product using self-service tools Apply data governance to the data products you create Learn the differences between synchronous and asynchronous data services Implement self-services that support decentralized data

Data Mesh

Data Mesh
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 387
Release :
ISBN-10 : 9781492092360
ISBN-13 : 1492092363
Rating : 4/5 (60 Downloads)

Synopsis Data Mesh by : Zhamak Dehghani

Many enterprises are investing in a next-generation data lake, hoping to democratize data at scale to provide business insights and ultimately make automated intelligent decisions. In this practical book, author Zhamak Dehghani reveals that, despite the time, money, and effort poured into them, data warehouses and data lakes fail when applied at the scale and speed of today's organizations. A distributed data mesh is a better choice. Dehghani guides architects, technical leaders, and decision makers on their journey from monolithic big data architecture to a sociotechnical paradigm that draws from modern distributed architecture. A data mesh considers domains as a first-class concern, applies platform thinking to create self-serve data infrastructure, treats data as a product, and introduces a federated and computational model of data governance. This book shows you why and how. Examine the current data landscape from the perspective of business and organizational needs, environmental challenges, and existing architectures Analyze the landscape's underlying characteristics and failure modes Get a complete introduction to data mesh principles and its constituents Learn how to design a data mesh architecture Move beyond a monolithic data lake to a distributed data mesh.

Building Event-Driven Microservices

Building Event-Driven Microservices
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 321
Release :
ISBN-10 : 9781492057840
ISBN-13 : 1492057843
Rating : 4/5 (40 Downloads)

Synopsis Building Event-Driven Microservices by : Adam Bellemare

Organizations today often struggle to balance business requirements with ever-increasing volumes of data. Additionally, the demand for leveraging large-scale, real-time data is growing rapidly among the most competitive digital industries. Conventional system architectures may not be up to the task. With this practical guide, you’ll learn how to leverage large-scale data usage across the business units in your organization using the principles of event-driven microservices. Author Adam Bellemare takes you through the process of building an event-driven microservice-powered organization. You’ll reconsider how data is produced, accessed, and propagated across your organization. Learn powerful yet simple patterns for unlocking the value of this data. Incorporate event-driven design and architectural principles into your own systems. And completely rethink how your organization delivers value by unlocking near-real-time access to data at scale. You’ll learn: How to leverage event-driven architectures to deliver exceptional business value The role of microservices in supporting event-driven designs Architectural patterns to ensure success both within and between teams in your organization Application patterns for developing powerful event-driven microservices Components and tooling required to get your microservice ecosystem off the ground

Streaming Data

Streaming Data
Author :
Publisher : Simon and Schuster
Total Pages : 314
Release :
ISBN-10 : 9781638357247
ISBN-13 : 1638357242
Rating : 4/5 (47 Downloads)

Synopsis Streaming Data by : Andrew Psaltis

Summary Streaming Data introduces the concepts and requirements of streaming and real-time data systems. The book is an idea-rich tutorial that teaches you to think about how to efficiently interact with fast-flowing data. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology As humans, we're constantly filtering and deciphering the information streaming toward us. In the same way, streaming data applications can accomplish amazing tasks like reading live location data to recommend nearby services, tracking faults with machinery in real time, and sending digital receipts before your customers leave the shop. Recent advances in streaming data technology and techniques make it possible for any developer to build these applications if they have the right mindset. This book will let you join them. About the Book Streaming Data is an idea-rich tutorial that teaches you to think about efficiently interacting with fast-flowing data. Through relevant examples and illustrated use cases, you'll explore designs for applications that read, analyze, share, and store streaming data. Along the way, you'll discover the roles of key technologies like Spark, Storm, Kafka, Flink, RabbitMQ, and more. This book offers the perfect balance between big-picture thinking and implementation details. What's Inside The right way to collect real-time data Architecting a streaming pipeline Analyzing the data Which technologies to use and when About the Reader Written for developers familiar with relational database concepts. No experience with streaming or real-time applications required. About the Author Andrew Psaltis is a software engineer focused on massively scalable real-time analytics. Table of Contents PART 1 - A NEW HOLISTIC APPROACH Introducing streaming data Getting data from clients: data ingestion Transporting the data from collection tier: decoupling the data pipeline Analyzing streaming data Algorithms for data analysis Storing the analyzed or collected data Making the data available Consumer device capabilities and limitations accessing the data PART 2 - TAKING IT REAL WORLD Analyzing Meetup RSVPs in real time

Kafka: The Definitive Guide

Kafka: The Definitive Guide
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 315
Release :
ISBN-10 : 9781491936115
ISBN-13 : 1491936118
Rating : 4/5 (15 Downloads)

Synopsis Kafka: The Definitive Guide by : Neha Narkhede

Every enterprise application creates data, whether it’s log messages, metrics, user activity, outgoing messages, or something else. And how to move all of this data becomes nearly as important as the data itself. If you’re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds. Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you’ll learn Kafka’s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer. Understand publish-subscribe messaging and how it fits in the big data ecosystem. Explore Kafka producers and consumers for writing and reading messages Understand Kafka patterns and use-case requirements to ensure reliable data delivery Get best practices for building data pipelines and applications with Kafka Manage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasks Learn the most critical metrics among Kafka’s operational measurements Explore how Kafka’s stream delivery capabilities make it a perfect source for stream processing systems

Engineering Data Mesh in Azure Cloud

Engineering Data Mesh in Azure Cloud
Author :
Publisher : Packt Publishing Ltd
Total Pages : 314
Release :
ISBN-10 : 9781805128946
ISBN-13 : 1805128949
Rating : 4/5 (46 Downloads)

Synopsis Engineering Data Mesh in Azure Cloud by : Aniruddha Deswandikar

Overcome data mesh adoption challenges using the cloud-scale analytics framework and make your data analytics landscape agile and efficient by using standard architecture patterns for diverse analytical workloads Key Features Delve into core data mesh concepts and apply them to real-world situations Safely reassess and redesign your framework for seamless data mesh integration Conquer practical challenges, from domain organization to building data contracts Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDecentralizing data and centralizing governance are practical, scalable, and modern approaches to data analytics. However, implementing a data mesh can feel like changing the engine of a moving car. Most organizations struggle to start and get caught up in the concept of data domains, spending months trying to organize domains. This is where Engineering Data Mesh in Azure Cloud can help. The book starts by assessing your existing framework before helping you architect a practical design. As you progress, you’ll focus on the Microsoft Cloud Adoption Framework for Azure and the cloud-scale analytics framework, which will help you quickly set up a landing zone for your data mesh in the cloud. The book also resolves common challenges related to the adoption and implementation of a data mesh faced by real customers. It touches on the concepts of data contracts and helps you build practical data contracts that work for your organization. The last part of the book covers some common architecture patterns used for modern analytics frameworks such as artificial intelligence (AI). By the end of this book, you’ll be able to transform existing analytics frameworks into a streamlined data mesh using Microsoft Azure, thereby navigating challenges and implementing advanced architecture patterns for modern analytics workloads.What you will learn Build a strategy to implement a data mesh in Azure Cloud Plan your data mesh journey to build a collaborative analytics platform Address challenges in designing, building, and managing data contracts Get to grips with monitoring and governing a data mesh Understand how to build a self-service portal for analytics Design and implement a secure data mesh architecture Resolve practical challenges related to data mesh adoption Who this book is for This book is for chief data officers and data architects of large and medium-size organizations who are struggling to maintain silos of data and analytics projects. Data architects and data engineers looking to understand data mesh and how it can help their organizations democratize data and analytics will also benefit from this book. Prior knowledge of managing centralized analytical systems, as well as experience with building data lakes, data warehouses, data pipelines, data integrations, and transformations is needed to get the most out of this book.

Streaming Databases

Streaming Databases
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 274
Release :
ISBN-10 : 9781098154790
ISBN-13 : 1098154797
Rating : 4/5 (90 Downloads)

Synopsis Streaming Databases by : Hubert Dulay

Real-time applications are becoming the norm today. But building a model that works properly requires real-time data from the source, in-flight stream processing, and low latency serving of its analytics. With this practical book, data engineers, data architects, and data analysts will learn how to use streaming databases to build real-time solutions. Authors Hubert Dulay and Ralph M. Debusmann take you through streaming database fundamentals, including how these databases reduce infrastructure for real-time solutions. You'll learn the difference between streaming databases, stream processing, and real-time online analytical processing (OLAP) databases. And you'll discover when to use push queries versus pull queries, and how to serve synchronous and asynchronous data emanating from streaming databases. This guide helps you: Explore stream processing and streaming databases Learn how to build a real-time solution with a streaming database Understand how to construct materialized views from any number of streams Learn how to serve synchronous and asynchronous data Get started building low-complexity streaming solutions with minimal setup

Streaming Systems

Streaming Systems
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 362
Release :
ISBN-10 : 9781491983829
ISBN-13 : 1491983825
Rating : 4/5 (29 Downloads)

Synopsis Streaming Systems by : Tyler Akidau

Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way. Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax. You’ll explore: How streaming and batch data processing patterns compare The core principles and concepts behind robust out-of-order data processing How watermarks track progress and completeness in infinite datasets How exactly-once data processing techniques ensure correctness How the concepts of streams and tables form the foundations of both batch and streaming data processing The practical motivations behind a powerful persistent state mechanism, driven by a real-world example How time-varying relations provide a link between stream processing and the world of SQL and relational algebra

Implementing Data Mesh

Implementing Data Mesh
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 268
Release :
ISBN-10 : 9781098156220
ISBN-13 : 1098156226
Rating : 4/5 (20 Downloads)

Synopsis Implementing Data Mesh by : Jean-Georges Perrin

As data continues to grow and become more complex, organizations seek innovative solutions to manage their data effectively. Data Mesh is one solution that provides a new approach to managing data in complex organizations. This practical guide offers step-by-step guidance on how to implement data mesh in your organization. In this book, Jean-Georges Perrin and Eric Broda focus on the key components of data mesh and provide practical advice supported by code. You'll explore a simple and intuitive process for identifying key data mesh components and data products, and learn about a consistent set of interfaces and access methods that make data products easy to consume. This approach ensures that your data products are easily accessible and the data mesh ecosystem is easy to navigate. With this book, you'll learn how to: Identify, define, and build data products that interoperate within an enterprise data mesh Build a data mesh fabric that binds data products together Build and deploy data products in a data mesh Establish the organizational structure to operate data products, data platforms, and data fabric Learn an innovative architecture that brings data products and data fabric together into the data mesh About the authors: Jean-Georges "JG" Perrin is a technology leader focusing on building innovative and modern data platforms. Eric Broda is a technology executive, practitioner, and founder of a boutique consulting firm that helps global enterprises realize value from data.