Strategies in Biomedical Data Science

Strategies in Biomedical Data Science
Author :
Publisher : John Wiley & Sons
Total Pages : 466
Release :
ISBN-10 : 9781119256182
ISBN-13 : 1119256186
Rating : 4/5 (82 Downloads)

Synopsis Strategies in Biomedical Data Science by : Jay A. Etchings

An essential guide to healthcare data problems, sources, and solutions Strategies in Biomedical Data Science provides medical professionals with much-needed guidance toward managing the increasing deluge of healthcare data. Beginning with a look at our current top-down methodologies, this book demonstrates the ways in which both technological development and more effective use of current resources can better serve both patient and payer. The discussion explores the aggregation of disparate data sources, current analytics and toolsets, the growing necessity of smart bioinformatics, and more as data science and biomedical science grow increasingly intertwined. You'll dig into the unknown challenges that come along with every advance, and explore the ways in which healthcare data management and technology will inform medicine, politics, and research in the not-so-distant future. Real-world use cases and clear examples are featured throughout, and coverage of data sources, problems, and potential mitigations provides necessary insight for forward-looking healthcare professionals. Big Data has been a topic of discussion for some time, with much attention focused on problems and management issues surrounding truly staggering amounts of data. This book offers a lifeline through the tsunami of healthcare data, to help the medical community turn their data management problem into a solution. Consider the data challenges personalized medicine entails Explore the available advanced analytic resources and tools Learn how bioinformatics as a service is quickly becoming reality Examine the future of IOT and the deluge of personal device data The sheer amount of healthcare data being generated will only increase as both biomedical research and clinical practice trend toward individualized, patient-specific care. Strategies in Biomedical Data Science provides expert insight into the kind of robust data management that is becoming increasingly critical as healthcare evolves.

Data Analysis for the Life Sciences with R

Data Analysis for the Life Sciences with R
Author :
Publisher : CRC Press
Total Pages : 537
Release :
ISBN-10 : 9781498775861
ISBN-13 : 1498775861
Rating : 4/5 (61 Downloads)

Synopsis Data Analysis for the Life Sciences with R by : Rafael A. Irizarry

This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained.

Data Science Strategy For Dummies

Data Science Strategy For Dummies
Author :
Publisher : John Wiley & Sons
Total Pages : 423
Release :
ISBN-10 : 9781119566274
ISBN-13 : 1119566274
Rating : 4/5 (74 Downloads)

Synopsis Data Science Strategy For Dummies by : Ulrika Jägare

All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.

Data Science and Predictive Analytics

Data Science and Predictive Analytics
Author :
Publisher : Springer Nature
Total Pages : 940
Release :
ISBN-10 : 9783031174834
ISBN-13 : 3031174836
Rating : 4/5 (34 Downloads)

Synopsis Data Science and Predictive Analytics by : Ivo D. Dinov

This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings. Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book’s fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.

Data Analytics in Biomedical Engineering and Healthcare

Data Analytics in Biomedical Engineering and Healthcare
Author :
Publisher : Academic Press
Total Pages : 298
Release :
ISBN-10 : 9780128193150
ISBN-13 : 0128193158
Rating : 4/5 (50 Downloads)

Synopsis Data Analytics in Biomedical Engineering and Healthcare by : Kun Chang Lee

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks

Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 426
Release :
ISBN-10 : 9781492073000
ISBN-13 : 1492073008
Rating : 4/5 (00 Downloads)

Synopsis Machine Learning and Data Science Blueprints for Finance by : Hariom Tatsat

Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Biomedical Measurement Systems and Data Science

Biomedical Measurement Systems and Data Science
Author :
Publisher : Cambridge University Press
Total Pages : 405
Release :
ISBN-10 : 9781316832769
ISBN-13 : 1316832767
Rating : 4/5 (69 Downloads)

Synopsis Biomedical Measurement Systems and Data Science by : Michael Insana

Discover the fundamental principles of biomedical measurement design and performance evaluation with this hands-on guide. Whether you develop measurement instruments or use them in novel ways, this practical text will prepare you to be an effective generator and consumer of biomedical data. Designed for both classroom instruction and self-study, it explains how information is encoded into recorded data and can be extracted and displayed in an accessible manner. Describes and integrates experimental design, performance assessment, classification, and system modelling. Combines mathematical concepts with computational models, providing the tools needed to answer advanced biomedical questions. Includes MATLAB® scripts throughout to help readers model all types of biomedical systems, and contains numerous homework problems, with a solutions manual available online. This is an essential text for advanced undergraduate and graduate students in bioengineering, electrical and computer engineering, computer science, medical physics, and anyone preparing for a career in biomedical sciences and engineering.

Fundamentals of Clinical Data Science

Fundamentals of Clinical Data Science
Author :
Publisher : Springer
Total Pages : 219
Release :
ISBN-10 : 9783319997131
ISBN-13 : 3319997130
Rating : 4/5 (31 Downloads)

Synopsis Fundamentals of Clinical Data Science by : Pieter Kubben

This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.

Large-Scale Biomedical Science

Large-Scale Biomedical Science
Author :
Publisher : National Academies Press
Total Pages : 297
Release :
ISBN-10 : 9780309089128
ISBN-13 : 0309089123
Rating : 4/5 (28 Downloads)

Synopsis Large-Scale Biomedical Science by : National Research Council

The nature of biomedical research has been evolving in recent years. Technological advances that make it easier to study the vast complexity of biological systems have led to the initiation of projects with a larger scale and scope. In many cases, these large-scale analyses may be the most efficient and effective way to extract functional information from complex biological systems. Large-Scale Biomedical Science: Exploring Strategies for Research looks at the role of these new large-scale projects in the biomedical sciences. Though written by the National Academies' Cancer Policy Board, this book addresses implications of large-scale science extending far beyond cancer research. It also identifies obstacles to the implementation of these projects, and makes recommendations to improve the process. The ultimate goal of biomedical research is to advance knowledge and provide useful innovations to society. Determining the best and most efficient method for accomplishing that goal, however, is a continuing and evolving challenge. The recommendations presented in Large-Scale Biomedical Science are intended to facilitate a more open, inclusive, and accountable approach to large-scale biomedical research, which in turn will maximize progress in understanding and controlling human disease.

A Platform for Biomedical Discovery and Data-powered Health

A Platform for Biomedical Discovery and Data-powered Health
Author :
Publisher :
Total Pages : 48
Release :
ISBN-10 : UCBK:C117559338
ISBN-13 :
Rating : 4/5 (38 Downloads)

Synopsis A Platform for Biomedical Discovery and Data-powered Health by : National Library of Medicine (U.S.). Board of Regents