Stochastic Modelling of Reaction–Diffusion Processes

Stochastic Modelling of Reaction–Diffusion Processes
Author :
Publisher : Cambridge University Press
Total Pages : 322
Release :
ISBN-10 : 9781108572996
ISBN-13 : 1108572995
Rating : 4/5 (96 Downloads)

Synopsis Stochastic Modelling of Reaction–Diffusion Processes by : Radek Erban

This practical introduction to stochastic reaction-diffusion modelling is based on courses taught at the University of Oxford. The authors discuss the essence of mathematical methods which appear (under different names) in a number of interdisciplinary scientific fields bridging mathematics and computations with biology and chemistry. The book can be used both for self-study and as a supporting text for advanced undergraduate or beginning graduate-level courses in applied mathematics. New mathematical approaches are explained using simple examples of biological models, which range in size from simulations of small biomolecules to groups of animals. The book starts with stochastic modelling of chemical reactions, introducing stochastic simulation algorithms and mathematical methods for analysis of stochastic models. Different stochastic spatio-temporal models are then studied, including models of diffusion and stochastic reaction-diffusion modelling. The methods covered include molecular dynamics, Brownian dynamics, velocity jump processes and compartment-based (lattice-based) models.

Stochastic Modelling of Reaction-Diffusion Processes

Stochastic Modelling of Reaction-Diffusion Processes
Author :
Publisher : Cambridge University Press
Total Pages : 321
Release :
ISBN-10 : 9781108498128
ISBN-13 : 1108498124
Rating : 4/5 (28 Downloads)

Synopsis Stochastic Modelling of Reaction-Diffusion Processes by : Radek Erban

Practical introduction for advanced undergraduate or beginning graduate students of applied mathematics, developed at the University of Oxford.

Deterministic Versus Stochastic Modelling in Biochemistry and Systems Biology

Deterministic Versus Stochastic Modelling in Biochemistry and Systems Biology
Author :
Publisher : Elsevier
Total Pages : 411
Release :
ISBN-10 : 9781908818218
ISBN-13 : 1908818212
Rating : 4/5 (18 Downloads)

Synopsis Deterministic Versus Stochastic Modelling in Biochemistry and Systems Biology by : Paola Lecca

Stochastic kinetic methods are currently considered to be the most realistic and elegant means of representing and simulating the dynamics of biochemical and biological networks. Deterministic versus stochastic modelling in biochemistry and systems biology introduces and critically reviews the deterministic and stochastic foundations of biochemical kinetics, covering applied stochastic process theory for application in the field of modelling and simulation of biological processes at the molecular scale. Following an overview of deterministic chemical kinetics and the stochastic approach to biochemical kinetics, the book goes onto discuss the specifics of stochastic simulation algorithms, modelling in systems biology and the structure of biochemical models. Later chapters cover reaction-diffusion systems, and provide an analysis of the Kinfer and BlenX software systems. The final chapter looks at simulation of ecodynamics and food web dynamics. Introduces mathematical concepts and formalisms of deterministic and stochastic modelling through clear and simple examples Presents recently developed discrete stochastic formalisms for modelling biological systems and processes Describes and applies stochastic simulation algorithms to implement a stochastic formulation of biochemical and biological kinetics

Inference for Diffusion Processes

Inference for Diffusion Processes
Author :
Publisher : Springer Science & Business Media
Total Pages : 439
Release :
ISBN-10 : 9783642259692
ISBN-13 : 3642259693
Rating : 4/5 (92 Downloads)

Synopsis Inference for Diffusion Processes by : Christiane Fuchs

Diffusion processes are a promising instrument for realistically modelling the time-continuous evolution of phenomena not only in the natural sciences but also in finance and economics. Their mathematical theory, however, is challenging, and hence diffusion modelling is often carried out incorrectly, and the according statistical inference is considered almost exclusively by theoreticians. This book explains both topics in an illustrative way which also addresses practitioners. It provides a complete overview of the current state of research and presents important, novel insights. The theory is demonstrated using real data applications.

Stochastic Processes for Physicists

Stochastic Processes for Physicists
Author :
Publisher : Cambridge University Press
Total Pages : 203
Release :
ISBN-10 : 9781139486798
ISBN-13 : 1139486799
Rating : 4/5 (98 Downloads)

Synopsis Stochastic Processes for Physicists by : Kurt Jacobs

Stochastic processes are an essential part of numerous branches of physics, as well as in biology, chemistry, and finance. This textbook provides a solid understanding of stochastic processes and stochastic calculus in physics, without the need for measure theory. In avoiding measure theory, this textbook gives readers the tools necessary to use stochastic methods in research with a minimum of mathematical background. Coverage of the more exotic Levy processes is included, as is a concise account of numerical methods for simulating stochastic systems driven by Gaussian noise. The book concludes with a non-technical introduction to the concepts and jargon of measure-theoretic probability theory. With over 70 exercises, this textbook is an easily accessible introduction to stochastic processes and their applications, as well as methods for numerical simulation, for graduate students and researchers in physics.

Stochastic Processes in Cell Biology

Stochastic Processes in Cell Biology
Author :
Publisher : Springer Nature
Total Pages : 773
Release :
ISBN-10 : 9783030725150
ISBN-13 : 3030725154
Rating : 4/5 (50 Downloads)

Synopsis Stochastic Processes in Cell Biology by : Paul C. Bressloff

This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling
Author :
Publisher : Academic Press
Total Pages : 410
Release :
ISBN-10 : 9781483269276
ISBN-13 : 1483269272
Rating : 4/5 (76 Downloads)

Synopsis An Introduction to Stochastic Modeling by : Howard M. Taylor

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Analysis For Diffusion Processes On Riemannian Manifolds

Analysis For Diffusion Processes On Riemannian Manifolds
Author :
Publisher : World Scientific
Total Pages : 392
Release :
ISBN-10 : 9789814452663
ISBN-13 : 9814452661
Rating : 4/5 (63 Downloads)

Synopsis Analysis For Diffusion Processes On Riemannian Manifolds by : Feng-yu Wang

Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.

Stochastic Dynamics in Computational Biology

Stochastic Dynamics in Computational Biology
Author :
Publisher : Springer Nature
Total Pages : 284
Release :
ISBN-10 : 9783030623876
ISBN-13 : 3030623874
Rating : 4/5 (76 Downloads)

Synopsis Stochastic Dynamics in Computational Biology by : Stefanie Winkelmann

The aim of this book is to provide a well-structured and coherent overview of existing mathematical modeling approaches for biochemical reaction systems, investigating relations between both the conventional models and several types of deterministic-stochastic hybrid model recombinations. Another main objective is to illustrate and compare diverse numerical simulation schemes and their computational effort. Unlike related works, this book presents a broad scope in its applications, from offering a detailed introduction to hybrid approaches for the case of multiple population scales to discussing the setting of time-scale separation resulting from widely varying firing rates of reaction channels. Additionally, it also addresses modeling approaches for non well-mixed reaction-diffusion dynamics, including deterministic and stochastic PDEs and spatiotemporal master equations. Finally, by translating and incorporating complex theory to a level accessible to non-mathematicians, this book effectively bridges the gap between mathematical research in computational biology and its practical use in biological, biochemical, and biomedical systems.

Mathematical Models of Chemical Reactions

Mathematical Models of Chemical Reactions
Author :
Publisher : Manchester University Press
Total Pages : 296
Release :
ISBN-10 : 0719022088
ISBN-13 : 9780719022081
Rating : 4/5 (88 Downloads)

Synopsis Mathematical Models of Chemical Reactions by : Péter Érdi