First-order and Stochastic Optimization Methods for Machine Learning

First-order and Stochastic Optimization Methods for Machine Learning
Author :
Publisher : Springer Nature
Total Pages : 591
Release :
ISBN-10 : 9783030395681
ISBN-13 : 3030395685
Rating : 4/5 (81 Downloads)

Synopsis First-order and Stochastic Optimization Methods for Machine Learning by : Guanghui Lan

This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.

Stochastic Optimization for Large-scale Machine Learning

Stochastic Optimization for Large-scale Machine Learning
Author :
Publisher : CRC Press
Total Pages : 189
Release :
ISBN-10 : 9781000505610
ISBN-13 : 1000505618
Rating : 4/5 (10 Downloads)

Synopsis Stochastic Optimization for Large-scale Machine Learning by : Vinod Kumar Chauhan

Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning.

Introduction to Stochastic Search and Optimization

Introduction to Stochastic Search and Optimization
Author :
Publisher : John Wiley & Sons
Total Pages : 620
Release :
ISBN-10 : 9780471441908
ISBN-13 : 0471441902
Rating : 4/5 (08 Downloads)

Synopsis Introduction to Stochastic Search and Optimization by : James C. Spall

* Unique in its survey of the range of topics. * Contains a strong, interdisciplinary format that will appeal to both students and researchers. * Features exercises and web links to software and data sets.

Sequential Stochastic Optimization

Sequential Stochastic Optimization
Author :
Publisher : John Wiley & Sons
Total Pages : 348
Release :
ISBN-10 : 9781118164402
ISBN-13 : 1118164407
Rating : 4/5 (02 Downloads)

Synopsis Sequential Stochastic Optimization by : R. Cairoli

Sequential Stochastic Optimization provides mathematicians andapplied researchers with a well-developed framework in whichstochastic optimization problems can be formulated and solved.Offering much material that is either new or has never beforeappeared in book form, it lucidly presents a unified theory ofoptimal stopping and optimal sequential control of stochasticprocesses. This book has been carefully organized so that littleprior knowledge of the subject is assumed; its only prerequisitesare a standard graduate course in probability theory and somefamiliarity with discrete-parameter martingales. Major topics covered in Sequential Stochastic Optimization include: * Fundamental notions, such as essential supremum, stopping points,accessibility, martingales and supermartingales indexed by INd * Conditions which ensure the integrability of certain suprema ofpartial sums of arrays of independent random variables * The general theory of optimal stopping for processes indexed byInd * Structural properties of information flows * Sequential sampling and the theory of optimal sequential control * Multi-armed bandits, Markov chains and optimal switching betweenrandom walks

Statistical Learning Theory and Stochastic Optimization

Statistical Learning Theory and Stochastic Optimization
Author :
Publisher : Springer
Total Pages : 278
Release :
ISBN-10 : 9783540445074
ISBN-13 : 3540445072
Rating : 4/5 (74 Downloads)

Synopsis Statistical Learning Theory and Stochastic Optimization by : Olivier Catoni

Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.

Reinforcement Learning and Stochastic Optimization

Reinforcement Learning and Stochastic Optimization
Author :
Publisher : John Wiley & Sons
Total Pages : 1090
Release :
ISBN-10 : 9781119815037
ISBN-13 : 1119815037
Rating : 4/5 (37 Downloads)

Synopsis Reinforcement Learning and Stochastic Optimization by : Warren B. Powell

REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.

Stochastic Learning and Optimization

Stochastic Learning and Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 575
Release :
ISBN-10 : 9780387690827
ISBN-13 : 0387690824
Rating : 4/5 (27 Downloads)

Synopsis Stochastic Learning and Optimization by : Xi-Ren Cao

Performance optimization is vital in the design and operation of modern engineering systems, including communications, manufacturing, robotics, and logistics. Most engineering systems are too complicated to model, or the system parameters cannot be easily identified, so learning techniques have to be applied. This book provides a unified framework based on a sensitivity point of view. It also introduces new approaches and proposes new research topics within this sensitivity-based framework. This new perspective on a popular topic is presented by a well respected expert in the field.

Learning Automata and Stochastic Optimization

Learning Automata and Stochastic Optimization
Author :
Publisher : Springer
Total Pages : 207
Release :
ISBN-10 : 3662174871
ISBN-13 : 9783662174876
Rating : 4/5 (71 Downloads)

Synopsis Learning Automata and Stochastic Optimization by : A.S. Poznyak

In the last decade there has been a steadily growing need for and interest in computational methods for solving stochastic optimization problems with or wihout constraints. Optimization techniques have been gaining greater acceptance in many industrial applications, and learning systems have made a significant impact on engineering problems in many areas, including modelling, control, optimization, pattern recognition, signal processing and diagnosis. Learning automata have an advantage over other methods in being applicable across a wide range of functions. Featuring new and efficient learning techniques for stochastic optimization, and with examples illustrating the practical application of these techniques, this volume will be of benefit to practicing control engineers and to graduate students taking courses in optimization, control theory or statistics.

Optimization for Machine Learning

Optimization for Machine Learning
Author :
Publisher : MIT Press
Total Pages : 509
Release :
ISBN-10 : 9780262016469
ISBN-13 : 026201646X
Rating : 4/5 (69 Downloads)

Synopsis Optimization for Machine Learning by : Suvrit Sra

An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

First-Order Methods in Optimization

First-Order Methods in Optimization
Author :
Publisher : SIAM
Total Pages : 476
Release :
ISBN-10 : 9781611974980
ISBN-13 : 1611974984
Rating : 4/5 (80 Downloads)

Synopsis First-Order Methods in Optimization by : Amir Beck

The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.